期刊文献+

Nonorientable Genera of Petersen Powers

Nonorientable Genera of Petersen Powers
原文传递
导出
摘要 In the paper, we prove that for every integer n ≥ 1, there exists a Petersen power pn with nonorientable genus and Euler genus precisely n, which improves the upper bound of Mohar and Vodopivec's result [J. Graph Theory, 67, 1-8 (2011)] that for every integer k (2 ≤ k ≤ n- 1), a Petersen power Pn exists with nonorientable genus and Euler genus precisely k. In the paper, we prove that for every integer n ≥ 1, there exists a Petersen power pn with nonorientable genus and Euler genus precisely n, which improves the upper bound of Mohar and Vodopivec's result [J. Graph Theory, 67, 1-8 (2011)] that for every integer k (2 ≤ k ≤ n- 1), a Petersen power Pn exists with nonorientable genus and Euler genus precisely k.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第4期557-564,共8页 数学学报(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities(Grand No.NZ2015106) supported by National Natural Science Foundation of China(Grant Nos.11471106 and 11371133) NSFC of Hu’nan(Grant No.14JJ2043)
关键词 Dot product Petersen power GENUS Dot product, Petersen power, genus
  • 相关文献

参考文献14

  • 1Belcastro, S., Kaminski, J.: Families of dot-product snarks on orientable surfaces of low genus. Graphs Combin., 23, 229-240 (2007). 被引量:1
  • 2Cavicchioli, A., Murgolo, T. E., Ruini, B., et al.: Special class of snarks. Acta Appl. Math., 76, 57-88 (2003). 被引量:1
  • 3Chartrand, G., Lesniak, L.: Graphs and Digraphs, 2nd edition, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1986. 被引量:1
  • 4Diestel, R.: Graph Theory, 3rd edition, Springer, Berlin, 2005. 被引量:1
  • 5Gross, J. L., Tucker, T. W.: Topological Graph Theory, Wiley/Interscience, New York, 1987. 被引量:1
  • 6Isaacs, R.: Infinite families of nontrivial trivalent graph which are not Tait colorable. Araer. Math. Monthly, 82, 221-239 (1975). 被引量:1
  • 7Liu, W.Z., Liu, Y. P., Xu, Y.: A census of boundary cubic rooted planar maps. Discrete Appl. Math., 155,1678-1688 (2007). 被引量:1
  • 8Liu, W. Z., Chen, Y. C.: Polyhedral embeddings of snarks with arbitrary nonorientable genera. Electr. J. Combin., 19(3), #P14 (2012). 被引量:1
  • 9Mohar, B., Thomassen, C.: Graphs on Surfaces, Johns Hopkins University Press, Baltimore, London, 2001. 被引量:1
  • 10Mohar, B., Vodopivec, A.: The genus of Petersen powers. J. Graph Theory, 67, 1-8 (2011). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部