期刊文献+

一种基于k-means聚类和半监督学习的医学图像分割算法 被引量:5

A medical image segmentation algorithm based on k-means clustering and semi-supervised learning
下载PDF
导出
摘要 医学图像分割是计算机视觉和图像处理领域近年来研究的热点问题之一。一种基于k-means聚类和半监督学习的医学图像分割新算法被提出。在k-means聚类模型中,相似度函数是关系到聚类效果好坏的关键因素。所使用的相似度函数通过基于side-information的半监督学习方法来确定;确定后的相似度函数又被运用回k-means聚类模型中来实现对医学图像的分割。为了检验该算法效果,脑部肿瘤患者的磁共振图像被运用在实验中。分析结果表明:该算法在本文所采用的实例中能获得优于传统算法的分割效果。 Medical Image Segmentation is one of the most popular applications in contemporary computer vision and image processing fields. A novel algorithm based on k-means clustering and semi-supervised learning was presented in this study. The similarity function is one of the most important factors in clustering algorithms. It was determined via a semi-supervised learning process based on side-information in k-means method in our study. The learned similarity function was thereafter incorporated in the clustering model to differentiate tumor pixels from non-tumor pixels. In order to evaluate the presented algorithm,experiments incorporating MRI from patients with brain tumor were conducted as well. The superiority of the introduced algorithm over several existing ones was demonstrated therein.
作者 黄伟 陶俊才
出处 《南昌大学学报(理科版)》 CAS 北大核心 2014年第1期31-35,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金项目(61363046/F020502)
关键词 聚类 相似度函数 半监督学习 图像分割 Clustering Similarity function Semi-supervised learning Image segmentation
  • 相关文献

参考文献8

  • 1HUANG W, CHAN K, Zhou J, Region-based Naso- pharyngeal Carcinoma Lesion Segmentation from MRI using Clustering-and Classification-based Methods with Learning [J]. Journal of Digital Imaging, 2013 (26) :472-482. 被引量:1
  • 2HUANG W, CHAN K, GAO Y, ZHOU J, CHONG V. Semi-supervised Nasopharyngeal Carcinoma Lesion Extraction from Magnetic Resonance Images using Online Spectral Clustering with a Learned Metric[J]. Lecture Notes in Computer Science, 2008 ( 5241 ) : 51- 58,2008. 被引量:1
  • 3DUDA R, HART P,STORK D. Pattern Classification [M]. Second Edition. John Wiley & Sons Inc Press. 2001:521-529. 被引量:1
  • 4LIU Y. Distance Metric Learning: A Comprehensive Review[J]. Miscellaneous Papers in Computer and In- formation Science of Michigan State University, 2006 (106) :1-51. 被引量:1
  • 5SHI J, MALIK J. Normalized Cuts and Image Segmen- tation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000(22) :888-905. 被引量:1
  • 6NG A,JORDAN M, WEISS Y. On Spectral Cluste- ring: Analysis and An Algorithm [J]. Advances in Neural Information Processing Systems, 2002 (16) : 64- 72. 被引量:1
  • 7XING E, NG A, JORDAN M, RUSSELL S. Distance Metric Learning, with Application to Clustering with Side-information[J]. Advances in Neural Information Processing Systems, 2003 ( 17 ) : 505-512. 被引量:1
  • 8RICE J. Mathematical Statistics and Data Analysis[M]. Second Edition. Duxbury Press. 2006: 321-334. 被引量:1

同被引文献29

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部