期刊文献+

微分进化算法在圆度误差评定中的应用 被引量:10

Application of Differential Evolutionary Algorithm for Evaluation of Roundness Error
下载PDF
导出
摘要 为了精确快速计算圆度误差,提出了基于微分进化智能优化算法的最小区域圆度误差评定方法。介绍了微分进化算法的基本原理及种群初始化、变异、交叉、选择实现步骤,建立了该算法求解最小区域圆度误差的数学模型。为验证算法的有效性,进行了大量实验并与多种算法进行对比,证实了方法的评定结果不仅小于最小二乘法及标准遗传算法评定结果,精度高,而且计算结果稳定,运算速度快。实验表明:微分进化算法用于最小区域圆度误差评定有较强的自适应能力、快速全局收敛性和高稳定性,适于对高精度圆度误差的快速评定。 In order to compute roundness error accurately and rapidly, the minimum zone roundness error based on adifferential evolution intelligent optimization algorithm is proposed. The fundamental principle of differential evolutionalgorithm and implementation steps of population initialization, mutation, crossover and selection of this algorithm areintroduced. Then, the mathematical model for using the differential evolution to solve the minimum zone roundness error isformulated. In order to validate the effectiveness of the algorithm, many experiments have been conducted and comparisonswith other algorithms have been made. The results verify that the errors computed by the proposed method are not only lessthan that of the least square method and the standard genetic algorithm, but also the computation result is stable and thespeed is rapid. The experimental indicated that the differential evolution for evaluating the minimum zone roundness errorhas very strong self-adaptive ability, better global convergence and high stability and it is suitable for rapid evaluation ofhigh precision roundness error.
出处 《计量学报》 CSCD 北大核心 2015年第2期123-127,共5页 Acta Metrologica Sinica
基金 国家自然科学基金(51075198,62172379,61325018) 南京工程学院校级科研基金(QKJB2011009,QKJA2009006)
关键词 计量学 圆度误差评定 微分进化 智能计算 最小区域圆 Metrology Circularity error evaluation Differential evolutionary Intelligent calculation Minimum zonecircle
  • 相关文献

参考文献26

  • 1郑宇,徐东明,张晖.一种圆度误差测量新方法的研究[J].长春理工大学学报(自然科学版),2012,35(4):56-58. 被引量:2
  • 2岳武陵,吴勇.按最大内接圆法评定圆度误差的仿增量算法[J].计量学报,2008,29(1):26-28. 被引量:6
  • 3张春阳,雷贤卿,李济顺,段明德.基于几何优化的圆度误差评定算法[J].机械工程学报,2010,46(12):8-12. 被引量:47
  • 4Samuel G L, Shunmugam M S. Evaluation of circularity from coordinate and form data using computational geometric techniques[ J ]. Precision Engineering ,2000,24 (3) :251 -263. 被引量:1
  • 5Rossi A, Antonetti M, Barloscio M, et al. Fast genetic algorithm for roundness evaluation by the minimum zone tolerance (MZT) method [ J ]. Measurement, 2011,44 (7) : 1243 -1252. 被引量:1
  • 6Murthy T S R, Abdin S Z. Minimum zone evaluation of surface [ J ]. International Journal of Machine Tool Design and Research,1980, 20 (2) :123 - 136. 被引量:1
  • 7Xiong Y L. Computer aided measurement of profile error of complex surfaces and curves: theory and algorithm [ J ]. International Journal Machine Tools and Manufacture, 1990,30( 3 ) : 339 - 357. 被引量:1
  • 8Lai J, Chen I H. Minimum zone evaluation of circles and cylinders [ J ]. International Journal of Machine Tools and Manufacture, 1995,36 (4) :435 - 451. 被引量:1
  • 9Zhu L M, Ding H, Xiong Y L. A steepest descent algorithm for circularity evaluation [ J ]. Computer Aided Design,2003,35 (3) :255 - 265. 被引量:1
  • 10Venkaiah N, Shunmugam M S. Evaluation of form data using computational geometric techniques-Part I : Circularity error [ J ]. International Journal of Machine Tools and Manufacture ,2007,47 ( 7 - 8 ) : 1229 - 1236. 被引量:1

二级参考文献117

共引文献152

同被引文献83

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部