期刊文献+

Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system 被引量:29

Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system
原文传递
导出
摘要 This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles' overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles. This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles' overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第1期229-239,共11页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.61175084)
关键词 obstacles terrain dynamical avoidance unmanned constraints overlapping unified flying spherical obstacles terrain dynamical avoidance unmanned constraints overlapping unified flying spherical
  • 相关文献

同被引文献162

引证文献29

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部