期刊文献+

具有脉冲的二阶泛函微分方程强迫振动性

Forced Oscillation of Second Order Functional Differential Equations with Impulse Effects
下载PDF
导出
摘要 研究了二阶脉冲泛函微分方程解的振动性.通过广义的Riccati变换,利用相关的不等式以及中值定理,得到方程振动的充分条件,并举例说明结论的可应用性. Some oscillation criteria are established for a forced second functional differential equation with impulses.Using Riccati transform,inequalities and mean value theorem,we obtain the sufficient conditions for the oscillation of the solutions.An example is also given to illustrate the relevance of the results.
出处 《河北师范大学学报(自然科学版)》 CAS 2015年第2期97-103,共7页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11071054) 河北省自然科学基金(A2011205012)
关键词 振动性 脉冲 时滞 oscillation impulse delay
  • 相关文献

参考文献2

二级参考文献37

  • 1张玉珠,燕居让.具有连续变量的差分方程振动性的判据[J].数学学报(中文版),1995,38(3):406-411. 被引量:75
  • 2申建华.具连续变量差分方程振动性的比较定理及应用[J].科学通报,1996,41(16):1441-1444. 被引量:49
  • 3Agarwal R P, Grace S R, O'Regan D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Dordrecht: Kluwer Academic, 2002. 被引量:1
  • 4Beckenbach E F, Bellman R. Inequalities. Berlin: Springer, 1961. 被引量:1
  • 5Butler G J. Oscillation theorems for a nonlinear analogue of Hill's equation. Oxford: Q J Math, 1976, 27: 159-171. 被引量:1
  • 6Butler G J. Integral averages and oscillation of second order nonlinear differential equations. SIAM J Math Anal, 1980, 11:190-200. 被引量:1
  • 7Cakmak D, Tiryaki A. Oscillation criteria for certain forced second order nonlinear differential equations with delayed argument. Comp Math Appl, 2005, 49:1647-1653. 被引量:1
  • 8Coffman C V, Wong J S W. Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations. Trans Amer Math Soc, 1972, 167:399-434. 被引量:1
  • 9Elabbasy E M, Hassan T S. Oscillation criteria for first order delay differential equations. Serdica Math J, 2004, 30:71-86. 被引量:1
  • 10Elabbasy E M, Hassan T S. Oscillation of nonlinear neutral delay differential equations. Serdica Math J, 2008, 34:531-542. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部