期刊文献+

基于改进混沌萤火虫算法的云计算资源调度 被引量:20

Cloud Computing Resource Scheduling Based on Improving Chaos Firefly Algorithm
下载PDF
导出
摘要 为提高云计算资源的利用率,保持负载平衡,提出一种基于改进混沌萤火虫算法的云计算资源调度模型。从任务的完成时间、完成效率、完成安全性3个方面建立云计算资源调度模型,在萤火虫算法中引入混沌算法,通过对个体进行扰动,加快收敛速度,降低局部最优的概率,并引入拉格朗日松弛函数改进云计算模型。基于Cloudsim的仿真实验结果表明,该算法能有效避免资源分配的不均衡,缩短任务完成时间,提高系统的整体处理能力。 In order to improve the utilization rate of cloud resource scheduling and keep load balance,chaos firefly algorithm is proposed for resource scheduling in cloud computing.Taking into account task completion time,task completion efficiency and task completion safety,a cloud resource allocation model is established.Through introducing chaos algorithm into firefly algorithm,disturbing individuals and strengthening rate of convergence,it lowers the probability of local optimum.Lagrange relaxation function is introduced for lack of resource scheduling in cloud computing.Simulation experimental result shows that the improved algorithm can effectively avoid imbalance in resource allocation,shorten completion time of task and enhance integrated processing capacity of system.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第2期17-20,25,共5页 Computer Engineering
基金 2014年度湖北省科技支撑计划基金资助项目(2014BDF073)
关键词 云计算 资源调度 混沌算法 萤火虫算法 组合优化 拉格朗日松弛函数 cloud computing resource scheduling chaos algorithm firefly algorithm combinatorial optimization lagrange relaxation function
  • 相关文献

参考文献10

二级参考文献79

  • 1姚羽,高福祥,于戈.基于混沌神经元的延时滥用入侵检测模型[J].电子学报,2004,32(8):1370-1373. 被引量:4
  • 2张楠,李志蜀,张建华.基于混沌理论的否定选择算法[J].四川大学学报(工程科学版),2006,38(1):124-127. 被引量:8
  • 3米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128. 被引量:13
  • 4FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10. 被引量:1
  • 5ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf. 被引量:1
  • 6BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28. 被引量:1
  • 7CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610. 被引量:1
  • 8KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf. 被引量:1
  • 9ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52. 被引量:1
  • 10DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[ C]//Proceedings of the 6th Symposium on Operating System Design and Implementation. New York: ACM, 2004:137 - 150. 被引量:1

共引文献639

同被引文献169

引证文献20

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部