期刊文献+

切触黎曼浸入的极小性

The minimality of contact-Riemannian immersion
下载PDF
导出
摘要 切触黎曼流形,其殆复结构不一定是可积的,是CR几何中伪厄尔米特流形的一般情形.选取TWT联络作为切触黎曼流形上的联络,在CR情形下它就是TW联络.推广CR几何中的伪厄尔米特浸入得到切触黎曼几何中的切触黎曼浸入,可以证明任何切触黎曼浸入一定是极小的. Contact-Riemannian manifolds, without necessarily integrable complex structures,are the generalization of pseudohermitian manifolds in CR geometry. The Tanaka-Webster-Tanno connection plays the role of Tanaka-Webster connection in the pseudohermitian case. Pseudo-hermitian immersions of CR geometry can be developed to contact-Rimannian immersions of contact Riemannian manifold, and it can be proved that any contact-Riemannian immersion is minimal.
作者 吴飞凡
机构地区 浙江大学数学系
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2015年第1期101-108,共8页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11171298)
关键词 切触黎曼流形 TWT联络 切触黎曼浸入 极小浸入 contact-Riemannian manifold TWT connection contact Riemannian immersion minimal immersion
  • 相关文献

参考文献10

  • 1Blair D E, Dragomir S. Pseudohermitian Geometry on Contact Riemannian Manifolds[J]. Rendiconti di Matematica, Serie VII 2002, 22: 275-341. 被引量:1
  • 2Tanaka N. A differential geometry study on strongly pseudo-convex manifolds[J]. Kinoku- niya, Tokyo, 1975. 被引量:1
  • 3Webster S M. Pseudohermitian structures on a real hypersurface[J]. J Differ Geom, 1978, 13: 25-41. 被引量:1
  • 4Tanno S. Variational Problems on Contact Riemmannian Manifolds[J]. Trans Amer Math Soc, 1989, 314: 349-379. 被引量:1
  • 5Barletta E, Dragomir S. Pseudohermitian immersions, pseudo-Einstein structures, and the Lee class of a CR manifold[J]. Kodai Math J, 1996, 19: 62-86. 被引量:1
  • 6Dragomir S. Pseudohermitian immersions between strictly pseudoconvex CR manifolds[J]. Amer J Math, 1995, 117(1): 169-202. 被引量:1
  • 7Urakawa H. Variational problems over strongly pseudoconvex CR manifolds[A]. Differential Geometry[C]. Editors by Gu Chaohao, Hu Hesheng, Xin Y L, Singapore: World Scientific, 1993, 233-242. 被引量:1
  • 8Dragomir S, Tomassini G. Differential Geometry and Analysis on CR manifold[A]. Progress in Mathematics 246[C]. Boston: Birkhauser, 2006. 被引量:1
  • 9白正国,沈一兵,等.黎曼几何初步,修订版[M].北京:高等教育出版社. 被引量:1
  • 10Wu Feifan, Wang Wei. The Bochner-type formula and the first eigenvalue of the sub- Laplacian on a contact Riemannian manifold[J]. Differ Geom Appl, 2014, 37: 66-88. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部