期刊文献+

基于Hadoop的仿射传播大数据聚类分析方法 被引量:8

Affinity propagation clustering for big data based on Hadoop
下载PDF
导出
摘要 仿射传播聚类算法(AP)是一个新的聚类分析方法,已经被广泛应用于各种领域。APC算法不能用于大型数据的分析。为了克服这个限制,在Hadoop分布式框架的基础上提出一种改进的放射传播聚类分析方法(基于Hadoop的仿射传播大数据聚类分析方法,简称APCH)。通过在Hadoop环境下重新设计算法流程,APCH算法成为了一个并行化的大数据聚类分析方法。此外APCH算法能够高效操作大数据,并能够直接决定聚类的个数。为了验证方法的性能,在多个数据集上进行了实验。实验结果表明APCH对大数据处理有很好的适应性和延展性。APCH采用开源的方式提供可执行软件程序和源代码,用户可以下载后部署在自己的分布式集群中或者是部署在亚马逊EC2等云计算环境中。所有编译后的执行程序,源代码,用户手册,部分测试数据集均可以从https://github.com/Hello World CN/Map Reduce APC上下载。 Affinity Propagation Clustering(APC)is a new clustering algorithm. APC has been applied in various fields recently. However, AP can't be applied for analyzing large-scale data sets. To overcome this limitation, an improved Affinity Propagation cluster analysis algorithm(Affinity Propagation Clustering for Big Data Based on Hadoop, APCH)is proposed in the Hadoop distributed computing framework. After redesigning algorithm flow based on Hadoop framework, APCH becomes parallelized cluster analysis method for large-scale data. Moreover, APCH can efficiently operate big dada, and directly determine the number of clusters. To verify the provided method, we experiment its performance on many data sets. The experimental results show that APCH provides good scalability and flexibility on big data analysis. In addition,APCH is open-source software and can be freely downloaded. APCH can be deployed on your Hadoop clusters, or Amazon Elastic Compute Cloud(Amazon EC2), etc. All compiled execution binary package, user manual, including some test data sets can be downloaded from https://github.com/Hello World CN/Map Reduce APC.
作者 唐东明
出处 《计算机工程与应用》 CSCD 北大核心 2015年第4期29-34,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61100118 No.61003142 No.61373009) 中央高校基本科研业务费专项资金资助(No.2682014CX100)
关键词 仿射传播聚类 MAP REDUCE HADOOP 键值存储 大数据 affinity propagation clustering Map Reduce Hadoop key-value store big data
  • 相关文献

参考文献16

二级参考文献100

  • 1倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3Jain A K, Murty M N, Flyrm P J.Data clustering: a review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323. 被引量:1
  • 4Frey B J,Dueck D.Clustering by passing messages between data points[J].Science, 2007,315 : 972-976. 被引量:1
  • 5Dunia R, Qin S J.Subspace approach to multidimensional fault identification and reconstruction[J].AICHE Journal, 1998,44 (8) : 1813-1831. 被引量:1
  • 6Howley T, Madden M G.The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data[J].Knowledge-Based Systems, 2006,19(5 ) : 363-370. 被引量:1
  • 7Kaufman L,Rousseeuw P J.Finding groups in data:an introduction to cluster analysis[M].Malden:John Wiley and Sons,1990. 被引量:1
  • 8Dudoit S, Fridlyand J.A prediction-based resampling method for estimating the number of clusters in a dataset[J].Genome Biology,2002,3 (7) : 1-21. 被引量:1
  • 9Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18]. 被引量:1
  • 10Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056]. 被引量:1

共引文献1522

同被引文献77

引证文献8

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部