期刊文献+

标签共现的标签聚类算法研究 被引量:3

Research on tags co-occurrence for tags clustering algorithm
下载PDF
导出
摘要 在社会网络中,标签聚类研究可以解决标签冗余和语义模糊等问题。为了提高聚类有效性,提出综合标签共现信息确定标签特征向量,通过特征向量的提取计算相似度,将传统聚类算法中用几何距离计算对象与中心对象的距离改为用皮尔森相关系数计算,提出结合K-means聚类算法对标签进行聚类的标签共现聚类算法,并分析了算法的复杂度。最后对不同聚类算法进行了相关对比实验,实验结果表明该聚类算法效果要好于其他的聚类算法,从而验证了该聚类算法的有效性和可行性。 In the social network, tag clustering analysis can deal with problems such as tag redundancy and semantic fuzziness and so on. In order to improve the effectiveness of clustering, it proposes to integrate label co-occurrence information and derive the feature vector of label, extracts the feature vector to calculate the similarity. The traditional clustering algorithm uses the geometric distance to calculate the distance to the object and the center of the object, now uses the Pearson correlation coefficient to calculate. The tag clustering algorithm that combines with K-means clustering algorithm to cluster label is proposed, and then analyzes the complexity of the algorithm. Finally, doing relevant comparative experiments for different clustering algorithms, the experimental results show that the proposed clustering algorithm enhances the clustering performance than other clustering algorithms, and verify the availability and effectiveness of the proposed clustering algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第2期146-150,208,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61303117) 湖北省重点实验室开放基金资助项目(No.znss2013B012) 湖北省教育厅科研基金(No.B2014085 No.B20101104) 武汉科技大学大学生科技创新基金研究项目(No.12ZRC061)
关键词 标签聚类 标签共现 K-MEANS 皮尔森系数 特征向量 tag clustering tag co-occurrence K-means Pearson correlation coefficient feature vector
  • 相关文献

参考文献15

  • 1Golder S A,Huberman B A.Usage patterns of collaborative tagging systems[J].Journal of Information Science,2006,32(2):198-208. 被引量:1
  • 2Owen K,Daniel L.Tag Cloud drawing:algorithms for cloud visualization[C]//Proceedings of Tagging and Metadata for Social Information Organization(WWW2007),2007. 被引量:1
  • 3Golder S A,Huberman B A.Usage patterns of collaborative tagging systems[J].Journal of Information Science,2006,32(2):198-208. 被引量:1
  • 4Lin Y R,Chi Y,Zhu S,et al.Analyzing communities and their evolutions in dynamic social network[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2009,3(2):1-31. 被引量:1
  • 5孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1079
  • 6Gruber T.Ontology of folksonomy:a mash-up of apples and oranges[J].International Journal on Semantic Web and Information Systems(IJSWIS),2007,3(1):1-11. 被引量:1
  • 7Begelman G,Keller P,Smadja F.Automated tag clustering:improving search and exploration in the tag space[C]//Collaborative Web Tagging Workshop at WWW2006,Edinburgh,Scotland,2006:15-33. 被引量:1
  • 8Golder S A,Huberman B A.Usage patterns of collaborative tagging systems[J].Journal of Information Science,2006,32(2):198-208. 被引量:1
  • 9雷小锋,谢昆青,林帆,夏征义.一种基于K-Means局部最优性的高效聚类算法[J].软件学报,2008,19(7):1683-1692. 被引量:114
  • 10Ahlgren P,Jarneving B,Rousseau R.Requirements for a cocitation similarity measure,with special reference to Pearson's correlation coefficient[J].Journal of the American Society for Information Science and Technology,2003,54(6):550-560. 被引量:1

二级参考文献46

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Lewis D. D.. An evaluation of phrasal and clustered representalions on a text categorization task. In: Proceedings of SIGIR'92,the 15st ACM International Conference on Research and Development in Information Retrieval, Copenhagen, Denmark,1992, 37-50. 被引量:1
  • 3Sebastiani F,. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1-47. 被引量:1
  • 4Lewis D.. Naive bayes at forty: The independence assumption in information retrieval. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998,4-15. 被引量:1
  • 5Salton G.. Automatic Text Processing: The Transformation,Analysis, and Retrieval of Information by Computer. Reading,MA: Addison Wesley, 1989. 被引量:1
  • 6Mitchell T. M.. Machine Learning. New York: McCraw Hill,1996. 被引量:1
  • 7Joachims T.. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the 10th European Conference on Machine Learning,Chemnitz, Germany, 1998, 137-142. 被引量:1
  • 8Yang Y. , Liu X.. A Re-examination of text categorization methods. In: Proceedings of SIGIR'99, the 22nd ACM International Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999, 42-49. 被引量:1
  • 9樊兴华.因果推理和文本分类.清华大学博士后出站报告,2004. 被引量:1
  • 10Larkey L. S.. Automatic essay grading using text categorization techniques.. In: Proceedings of SIGIR'98, the 21st ACM International Conference on Research and Development in Information Retrieval, Melbourne, Australia, 1998, 90-95. 被引量:1

共引文献1267

同被引文献38

  • 1张林东.一颗长势良好的“豆瓣”[J].上海信息化,2007(5):76-79. 被引量:7
  • 2Peter Harrington.机器学习实战[M].北京:人民邮电出版社,2013:184-239. 被引量:2
  • 3SHIRKY C. Ontology is overrated: categories, links and tags.[ EB/OL ]. [ 2014-11-13 ]. http: //www. shirky, com/writ- ins/ontolozv overrated, html. 被引量:1
  • 4WWINBERGER D. By their tags shall ye know them [ EB/ OLI. [2014-11-23]. http: //www. corante, conom/om/ar- chives/032470, html. 被引量:1
  • 5RAFAILIDIS D, DARAS P. The TFC model: tensor factoriza- tion and tag clustering for item recommendation in social tagging systems [J]. IEEE Transactions on Systems, Man, and Cy- bernetics, Part A. Systems and Humans: A Publication of the IEEE Systems, Man, and Cybernetics Society, 2013, 45 (3) : 673-688. 被引量:1
  • 6POLLNER P, PALLA G, VICSEK T, et al. Clustering of tag- induced subgraphs in complex networks [ J ]. Physica, A. Statistical Mechanics and Its Applications, 2010, 389 (24) : 5887-5894. 被引量:1
  • 7tiOSSAIN, M. SHAHRIAR O, PRAVEEN K R, GRIMM C, et al. Scatter/gather clustering: flexibly incorporating user feed- back to steer clustering results [ J]. IEEE Transactions on Vi- sualization and Computer Graphics, 2012, 18 ( 12 ): 2829-2838. 被引量:1
  • 8KIM H N, E1-SADDIK A, JO G S. Collaborative error-reflec- ted models for cold-start recommender systems [ J ]. Decision Support Systems, 2011, 51 (3) : 519-531. 被引量:1
  • 9Wikipedia. Thomas Vander Wal. Folksonomy. [ EB/OL]. (2013-04-27) [ 2015-12-05 ] https ://en. wikipedia, org/ wiki/Thomas_Vander_Wal#Folksonomy. 被引量:1
  • 10Hotho A, Jiischke R, Schmitz C, et al. Information Retrieval in Folksonomies: Search and Ranking [ J ]. Semantic Web Research & Applications, 2006, 4011: 411-426. 被引量:1

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部