摘要
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
以Au3Cu-亚格子系统为例,介绍了3项发现:第一,至今阻碍金属材料科学进步的第四大障碍是研究者们尚未认识到一个真正的合金相Gibbs能函数应由合金基因序列和它们自己的Gibbs能级序列构建的Gibbs能配分函数导出。第二,建立合金基因Gibbs能配分函数的六条规则,特别证明了计算合金组态熵的简并因子中结构单元占居Gibbs能级的概率应按照组元占居格点的概率方式简并;第三,以前研究者从未预料到的主要特征:具有一条没有有序相和无序相共存区的单相相界线;相界线顶点成分和温度远偏离Au3Cu化合物临界点的成分和温度;在0 K时,Gibbs能随成分变化曲线上的最低点成分远偏离Au3Cu化合物的成分;Au3Cu-型长程有序合金的理论极限成分范围由第一跳变有序度决定。
基金
Project(51071181)supported by the National Natural Science Foundation of China
Project(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China