期刊文献+

A CHEBYSHEV-GAUSS SPECTRAL COLLOCATION METHOD FOR ORDINARY DIFFERENTIAL EQUATIONS 被引量:2

A CHEBYSHEV-GAUSS SPECTRAL COLLOCATION METHOD FOR ORDINARY DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 In this paper, we introduce an efficient Chebyshev-Gauss spectral collocation method for initial value problems of ordinary differential equations. We first propose a single interval method and analyze its convergence. We then develop a multi-interval method. The suggested algorithms enjoy spectral accuracy and can be implemented in stable and efficient manners. Some numerical comparisons with some popular methods are given to demonstrate the effectiveness of this approach. In this paper, we introduce an efficient Chebyshev-Gauss spectral collocation method for initial value problems of ordinary differential equations. We first propose a single interval method and analyze its convergence. We then develop a multi-interval method. The suggested algorithms enjoy spectral accuracy and can be implemented in stable and efficient manners. Some numerical comparisons with some popular methods are given to demonstrate the effectiveness of this approach.
作者 Xi Yang
出处 《Journal of Computational Mathematics》 SCIE CSCD 2015年第1期59-85,共27页 计算数学(英文)
关键词 Initial value problems of ordinary differential equations Chebyshev-Gaussspectral collocation method Spectral accuracy. Initial value problems of ordinary differential equations, Chebyshev-Gaussspectral collocation method, Spectral accuracy.
  • 相关文献

参考文献46

  • 1O. Axelsson, A class of A-stable methods, BIT, 9 (1969), 185-199. 被引量:1
  • 2P.Z. Bar-Yoseph, D. Fisher and O. Gottlieb, Spectral element methods for nonlinear spatio- temporal dynamics of an Euler-Bernonlli beam, Comput. Mech., 19 (1996), 136-151. 被引量:1
  • 3P.Z. Bar-Yoseph and E. Moses, Space-time spectral element methods for unsteady convection- diffusion problems, Int. J. Numer. Methods for Heat Fluid Flow, 7 (1997), 215-235. 被引量:1
  • 4C. Bernardi and Y. Maday, Spectral method, in Handbook of Numerical Analysis, part 5, edited by P.G. Ciarlet and J.L. Lions, North-Holland, 1997. 被引量:1
  • 5J.P. Boyd Chebyshev and Fourier Spectral Methods, Springer-Verlag, Berlin, 1989. 被引量:1
  • 6J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp., 18 (1964), 50-64. 被引量:1
  • 7J.C. Butcher, Integration processes based on Radau quadrature formulas, Math. Comp., 18 (1964), 233-244. 被引量:1
  • 8J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and Gen- eral Linear Methods, John wiley & Sons, Chichester, 1987. 被引量:1
  • 9C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in single domains, Springer-Verlag, Berlin, 2006. 被引量:1
  • 10F.H. Chipman, A-stable Runge-Kutta processes, BIT, 11 (1971), 384-388. 被引量:1

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部