摘要
In this paper, we introduce an efficient Chebyshev-Gauss spectral collocation method for initial value problems of ordinary differential equations. We first propose a single interval method and analyze its convergence. We then develop a multi-interval method. The suggested algorithms enjoy spectral accuracy and can be implemented in stable and efficient manners. Some numerical comparisons with some popular methods are given to demonstrate the effectiveness of this approach.
In this paper, we introduce an efficient Chebyshev-Gauss spectral collocation method for initial value problems of ordinary differential equations. We first propose a single interval method and analyze its convergence. We then develop a multi-interval method. The suggested algorithms enjoy spectral accuracy and can be implemented in stable and efficient manners. Some numerical comparisons with some popular methods are given to demonstrate the effectiveness of this approach.