摘要
基于包含五阶复系数的高阶Ginzburg—Landau方程为模型,采用分步傅立叶方法数值研究了正五阶非线性作用下啁啾超短脉冲间的相互作用,结果表明:正、负五阶非线性对啁啾超短脉冲的影响并不相同,正五阶非线性作用下其相互作用更为严重,这对光通信系统是非常有害的。利用不等振幅法对啁啾超短脉冲间的相互作用进行有效的抑制。当相邻孤子的初始间距为6.8,正五阶非线性参数为+0.001,振幅比为1.2:1时,可以实现2个孤子长距离的保型传输。最后讨论了正五阶非线性作用下多孤子之间的相互作用及抑制。
Based on the model of the high-order nonlinear complex Ginzburg-Landau equation with quintic term,we numerically study the interaction between of chirped ultrashort laser pulses by using distribution Fourier transform under positive quintic nonlinearity. The results show that the interaction between of chirped ultrashort laser pulses is different from that with negative quintic nonlinearity. The interaction between of chirped ultrashort laser pulses is more serious under positive quintic nonlinearity. This interaction is very harmful to the optical communication. The numerical results find that the interaction may be well suppressed by the unequal amplitude method. The further simulation find that two solitons preserving long-distance transmission can be achieved when the initial separation of solitons is equal to 6.8 and the positive quintic nonlinear coefficient is equal to +0.001 and the ratio of amplitude is equal to1.2:1.In the last,we investigate the interaction and suppression of four solitons under positive quintic nonlinearity.
出处
《激光杂志》
CAS
CSCD
北大核心
2014年第10期95-97,101,共4页
Laser Journal
基金
山西省教育厅科技开发项目
项目编号:20121110
关键词
超短脉冲
正五阶非线性
相邻相互作用
数值模拟
Ultrashort laser pulse
Positive quintic nonlinearity
Adjacent interaction
Numerical method