摘要
In this study, we analyzed the dynamical evolution of the ma jor 2012-2013 Northern Hemisphere (NH) stratospheric sudden warming (SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF. The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and -2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012-2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the 2012-2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs. The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface.
In this study, we analyzed the dynamical evolution of the ma jor 2012-2013 Northern Hemisphere (NH) stratospheric sudden warming (SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF. The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and -2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012-2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the 2012-2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs. The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface.
基金
Supported by the National(Key) Basic Research and Development(973)Program of China(2010CB428604)
National Natural Science Foundation of China(41105025)
the Dragon Three Program(10577)