期刊文献+

Al_2O_3陶瓷激光多道铣削温度场有限元模拟 被引量:2

Finite element simulation of thermal distribution in laser multi-track milling of Al_2O_3 ceramics
下载PDF
导出
摘要 激光铣削时能量是以局部热源的形式照射到基体表面上,集中的能量会引起铣削过程中温度场分布不均匀和不稳定。以Al2O3陶瓷材料激光铣削为例,建立了激光多道铣削的三维温度场有限元模型。利用ANSYS软件中的APDL(ANSYS Parametric Design Language)语言模拟了多道铣削时热源的移动。模拟结果表明:随着铣削过程的进行,后面的铣削道光斑中心的温度比前面的铣削道的中心温度高,且具有的热影响区也大;温度梯度变化最大的地方是在扫描方向发生改变的铣削样件边沿区域。将模拟结果的最高温度和文献中的实验结果进行比对,一致性较好。 The energy of the laser milling was input to the sample surface in the mode of local heat,which can cause the uneven and unstable of the temperature field during the laser milling. Take the laser milling on the Al2O3 ceramic materials for an example, the article set up the 3D finite element simulation model of the laser milling temperature field. The heat moving of the laser milling was simulated by the APDL language of the ANSYS software. The result of the simulation shows that the temperature of the center spot of the back track is higher than the front track with the process of the laser milling. The greatest temperature gradient located on the sample edge area in the scanning direction changes. The maximum temperature in the simulation results and literature experimental results for comparison are in good agreement.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第2期477-481,共5页 Infrared and Laser Engineering
基金 江苏省教育厅省高校重大基础研究项目(13KJA460001) 江苏省高校自然科学基金项目(14KJB460003) 江苏省光子制造科学与技术重点实验室开放基金(GZ201302) 江苏省先进制造技术重点实验室开放基金(HGAMTL-1408 HGDML-1101) 淮安市科技支撑计划(HAG2013034)
关键词 陶瓷 激光铣削 温度场 有限元模拟 ceramics laser milling temperature field finite element simulation
  • 相关文献

参考文献6

二级参考文献24

  • 1王小平,王大承.基于BP神经网络的20CrMo钢激光强化工艺参数优化控制[J].红外与激光工程,2004,33(3):269-273. 被引量:11
  • 2沈以赴,顾冬冬,余承业,杨家林,王洋.直接金属粉末激光烧结成形过程温度场模拟[J].中国机械工程,2005,16(1):67-73. 被引量:30
  • 3Williams J D, Deckard C R. Advances in Molding the Effects of Selected Parameters on the SLS Process. Rapid Prototyping Journal, 1998, 4(2): 90-100. 被引量:1
  • 4Agarwala M, Bourell D, Beaman J, et al. Direct Selective Laser Sintering of Metals. Rapid Prototyping Journal, 1995, 1 (1): 26-36. 被引量:1
  • 5Siu W W M, Lee S H K. Effective Conductivity Computation of a Packed Bed Using Constriction Resistance and Contact Angle Effects. International Journal of Heat and Mass Transfer, 2000,43:3917-3924. 被引量:1
  • 6Tolochko N K,Laoui T,Khlopkov Y V, et al. Absorptance of Powder Materials Suitable for Laser Sintering. Rapid Prototyping Journal, 2002, 16(3): 155-160. 被引量:1
  • 7Zhu H H, Lu L,Fuh J Y H. Influence of Binder's Liquid Volume Fraction on Direct Laser Sintering of Metallic Powder. Materials Science and Engineering A, 2004, 371:170-177. 被引量:1
  • 8Simchi A,Pohl H. Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder. Materials and Engineering A, 2003. 359:119-128. 被引量:1
  • 9Das S,Beaman J J,Wohlert M,et al.Direct Laser Frceform Fabrication of High Performance Metal Components .Rapid Prototyping Journal,1998,4(3):112-117. 被引量:1
  • 10Gusarov A V,Laoui T,Hroyen L,et al.Contact Thermal Conductivity of a Powder Bed in Selective Laser Sintering .International Journal of Heat and Mass Transfer, 2003, 46:1103-1109. 被引量:1

共引文献40

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部