摘要
First-principles calculations are performed to study the electronic structures and magnetic properties of ZnO nanowires(NM). Our results indicate that the single Zn defect can induce large local magnetic moment(~ 2μB) in the ZnO NWs, regardless of the surface modification. Interestingly, we find that local magnetic defects have strong spin interaction, and favor room-temperature ferromagnetism in bared ZnO NW. On the other hand, although H passivation does not destroy the local magnetic moment of Zn vacancy, it does greatly reduce the spin interaction between magnetic defects. Therefore, our results indicate that H passivation should be avoided in the process of experiments to maintain the room-temperature ferromagnetism.
First-principles calculations are performed to study the electronic structures and magnetic properties of ZnO nanowires(NM). Our results indicate that the single Zn defect can induce large local magnetic moment(~ 2μB) in the ZnO NWs, regardless of the surface modification. Interestingly, we find that local magnetic defects have strong spin interaction, and favor room-temperature ferromagnetism in bared ZnO NW. On the other hand, although H passivation does not destroy the local magnetic moment of Zn vacancy, it does greatly reduce the spin interaction between magnetic defects. Therefore, our results indicate that H passivation should be avoided in the process of experiments to maintain the room-temperature ferromagnetism.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11474165,21203096,and 11204137)
the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20130031,BK20131420,and BK2012392)
the Fundamental Research Funds for the Central Universities of China(Grant No.30920130111016)