期刊文献+

基于SPSO的机械流水线负载任务分配方法

Load Task Allocation Method of Mechanical Production Line Based on SPSO
下载PDF
导出
摘要 在弱通信条件下,传统的机械流水线任务分配方法采用任务的随机分配,无法根据流水线的实际负载能力,将应有的任务量分配到相应的流水线上。提出一种基于简化粒子群优化算法(Simplified particle swarm optimization algorithm,SPSO)的高效机械流水线任务分配方法,首先对每个流水线的实际负载能力进行动态评估。然后采用粒子群优化算法对所有流水线负载分配相应的计算任务。由于每个负载的任务量是根据实际的流水线性能来分配的,所以可以使得全局的效率最优化。最后通过实验对算法的性能进行验证。结果显示,改进方法在基于粒子群优化的机械流水线任务分配下,任务根据流水线性能,呈现很好的聚类,算法收敛性好,分配任务速度快,具有很好的应用价值。 Under the condition of weak communication, the traditional task allocation methods of mechanical pro- duction line use random way to allocate tasks, which cannot allocate some of tasks to the corresponding production line according to the actual load capacity of production line. An efficient task allocation method of mechanical pro- duction line based on simplified particle swarm optimization algorithm (SPSO) was proposed in the paper. First of all, the actual load capacity of each production line was dynamically evaluated, based on this, the particle swarm op- timization algorithm was adopted to allocate corresponding computing tasks to all the production line's load. Since each task load was allocated according to the actual performance of production line, it can make the optimized effi- ciency of global. Finally, experiments were used to validate the performance of the algorithm. The results show that based on particle swarm optimization for task allocation of mechanical production line, the improved method show good clustering according to the performance of production line, and the algorithm has good convergence, fast task al- location and great application value.
出处 《计算机仿真》 CSCD 北大核心 2015年第2期423-427,共5页 Computer Simulation
关键词 机械流水线 任务分配 粒子群优化算法 弱通信 Mechanical production line Task allocation Particle swarm optimization algorithm Weak communication
  • 相关文献

参考文献8

二级参考文献25

  • 1Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6): 39-42. 被引量:1
  • 2Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems [M]. New York: Oxford Univ Press, 1999. 被引量:1
  • 3Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [A]. Proc 2001 Congress Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 2001: 81-86. 被引量:1
  • 4Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. San Francisco: Morgan Kaufmann Publishers, 2001. 被引量:1
  • 5Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proc. IEEE Int. Conf. Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995,1942-1948. 被引量:1
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems [A]. Intelligent Technologies: from Theory to Applications [C]. Amsterdam: IOS Press, 2002. 214-220. 被引量:1
  • 7Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing, 2002, 1(2-3): 235-306. 被引量:1
  • 8Dautenhahn K. Book review: swarm intelligence [J]. Genetic Programming and Evolvable Machines, 2002, 3(1): 93-97. 被引量:1
  • 9Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [A]. Proc 1999 Congress Evolutionary Computation [C]. Piscataway, N J: IEEE Press, 1999:1951-1957. 被引量:1
  • 10Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimilation [A]. Proc 2000 Congress Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 2000:84-88. 被引量:1

共引文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部