期刊文献+

聚类数据挖掘可视化模型方法与技术 被引量:8

Visualization methods and techniques of clustering data mining
下载PDF
导出
摘要 面向通用数据资源,研究聚类数据可视化方法与技术,旨在探索有效的数据处理方法,满足信息领域对高维数据处理的要求。通过对高维数据进行降维处理和可视化映射实现,建立K均值算法的聚类数据挖掘可视化系统模型,实现中间聚簇结果、聚类中心、收敛准则函数值三类要素的可视化。利用加利福利亚大学欧文分校(UCI)数据库中的Iris数据集、Wine数据集、Seeds数据集对可视化系统模型方法进行测试。结果表明,该模型实现了对数据集的有效聚类,能够将中间聚类、聚类中心、收敛准则函数值进行实时有效的可视化表达,达到了预期效果。 Visualization methods and techniques provide powerful tools for discovering hidden laws,helping decision making,and explaining the empirical phenomena.The objective of the research on clustering data mining model visualization methods and techniques is to explore effective data processing methods,and to meet the needs of efficient data processing in the field of information science.This proposal mainly focused on clustering data mining visualization technology,visualization techniques for high-dimensional data via dimension reduction,and visual mapping technology.It studied K-means algorithm for clustering data and visualization,and developed methods for visualizing intermediate clustered results,cluster centers,and convergence criterion functions.It investigated a number of visualization methods,such as clustering data process-oriented,integrated color ratio method,coordinate change,and dimension constraint,with the goal of achieving adequate visualization of clustering data mining and analysis and establishing aK-means algorithm mining visualization system model.Using the Iris data set,Wine data sets,Seeds data set in UCI database,it also systematically tested and verified our data mining visualization models,and analyzed the effects of visualization models on the clustering results and convergence criterion.The test shows that desired results have been adieved.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2015年第1期7-15,共9页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 江苏省自然科学基金资助项目(BK2012511)
关键词 聚类数据挖掘 可视化 平行坐标法 K均值算法 clustering data mining visualization parallel coordinate K-means algorithm
  • 相关文献

参考文献14

  • 1BOUGHRIRA A, FAY D, KHADIR M T. Kohonen map combined to the k-means algorithm for the identi- fication of day types of algerian electricity load[C]. Andrienko G. Computer Information Systems and In- dustrial Management Applications. Alger: Computer Information Systems and Industrial Management Ap- plications, 2008 : 78-83. 被引量:1
  • 2WU Fangxiang. A genetic weighted k means algorithm for clustering gene expression data[C] Yu Shidong. Second International Multi-Symposiums on Computer and Computational Sciences. Aomen: Second Interna- tional Multi-Symposiums on Computer and Computa- tional Sciences, 2007 : 68-75. 被引量:1
  • 3LIU Yanli,LIU Xiyu, MENG Yan. Clustering analysis based on improved k-means algorithm and its application in HRM systemiC] Niu Lian-qiang, Zhang Shengnan. First IEEE International Symposium on Information Tech nologies and Applications in Education. Kunming: First IEEE International Symposium on Information Technolo- gies and Applications in Education, 2007:473-477. 被引量:1
  • 4翟旭君.基于平行坐标法的可视化数据挖掘技术研究[D].北京:清华大学,2004. 被引量:1
  • 5李渊..基于K-means算法的数据挖掘可视化技术的应用研究[D].北京交通大学,2007:
  • 6IWATA T,SAITO K. Visualization of anomalies using mixture models[J]. Journal of Intelligent manufactur- ing.2005,16 (6) : 635=643. 被引量:1
  • 7谢娟英,蒋帅,王春霞,张琰,谢维信.一种改进的全局K-均值聚类算法[J].陕西师范大学学报(自然科学版),2010,38(2):18-22. 被引量:47
  • 8周爱武,于亚飞.K-Means聚类算法的研究[J].计算机技术与发展,2011,21(2):62-65. 被引量:134
  • 9谭桂龙,陈谊.基于平行坐标的信息可视化方法的应用研究[J].北京工商大学学报(自然科学版),2008,26(2):75-80. 被引量:2
  • 10雷君虎,杨家红,钟坚成,王苏卫.基于PCA和平行坐标的高维数据可视化[J].计算机工程,2011,37(1):48-50. 被引量:12

二级参考文献30

共引文献192

同被引文献53

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部