Schur补为零的2×2分块矩阵的Drazin逆
摘要
本文分析研究了斯舒尔补S=D-CADB=0的分块矩阵(A B C D)在某些条件下的Drazin逆表达式.
出处
《赤峰学院学报(自然科学版)》
2015年第4期274-275,共2页
Journal of Chifeng University(Natural Science Edition)
基金
呼和浩特民族学院科学研究项目(HMZY1206)
内蒙古自治区高等学校科学研究项目(NJZY14207)
参考文献10
-
1S.L.Campbell, C.D.Meyer, Generalized Inverse of Linear Transformations[R], Pitman, London, 1979. 被引量:1
-
2S.L. Campell. The Drazin inverse and systems of second order linear differential equations [J]. Linear and Multi- linear Algebra, 14(1983): 195-198. 被引量:1
-
3A.Ben-lsral, T.N.E.GreviUe, Generalized Inverse: Theory and Applications[R]. Wiley, New York, 1974. 被引量:1
-
4J.J. Climent, M.Neumann, A.Sidi, A semi-iterative method for real spectrum singular linear systems with an arbitrary index[J]. Comput. Appl. Math., 87(1997):21-38. 被引量:1
-
5J.Miao, Results of Drazin inverse of a block matrices [J]. J. Shanghai Normal University, 18(1989): 25-31. 被引量:1
-
6Y.Wei, Expressions for the Drazin inverse of a block matrix[j]. Linear and Multilinear Algebra, 45(1998):131- 146. 被引量:1
-
7R.Hartwig, X.Li, Y.Wei,Representations for the Drazin inverse of a block matrix [J]. SIAM J. Matrix . Anal. Anal. Appl. 27(2006):757-771. 被引量:1
-
8S.L.Campbell, Linear systems with singular cotticients [J] of differential equations SIAM J, Math. Anal. 8 (1977): 76-81. 被引量:1
-
9X.Li, Y.Wei, A note on the representations for the Drazin inverse for a class of 2 :2 block matrices [J]. Linear Algebra AppI., 423(2007): 332-338. 被引量:1
-
10N.Castro-Gonz61ez, E.Dopazo, J.Robles, Formulas for the Drazin inverse of special block matrices [J]. Appl.Math. Computei, 174(2006): 252-270. 被引量:1
-
1谢钰程,王琦.多维分段连续型延迟微分方程的稳定性[J].岭南师范学院学报,2016,37(6):20-27. 被引量:2
-
2崔润卿,闫安志,潘晏中.N矩阵的Hadamard不等式[J].焦作工学院学报,1998,17(6):464-467.
-
3GrantWalker,肖锁.消减舒尔模在特征值为2的域上的一个对称性质(英文)[J].数学进展,2002,31(6):549-559.
-
4林梅羽.Banach空间中线性算子的广义Drazin逆的几种新特性[J].鞍山师范学院学报,2015,17(6):12-17.
-
5郑玉敏,崔润卿.M矩阵和逆M矩阵的Fischer不等式[J].焦作工学院学报,1999,18(3):231-234. 被引量:4
-
6Cheng-yi ZHANG,Fengmin XU,Zongben XU,Jicheng LI.General H-matrices and their Schur complements[J].Frontiers of Mathematics in China,2014,9(5):1141-1168.
-
7蔡玉书.舒尔不等式及其变式的应用[J].数学通讯(教师阅读),2010(8):62-64. 被引量:7
-
8Vera Serganova,丁璐,张伟,王世坤.代数超群的有限维表示[J].数学译林,2014,0(4):295-295.
-
9L.Giraud,A.Haidar,Y.Saad.Sparse Approximations of the Schur Complement for Parallel Algebraic Hybrid Solvers in 3D[J].Numerical Mathematics(Theory,Methods and Applications),2010,3(3):276-294.
-
10孙杰,赵学杰.复矩阵特征值的两种估计方法[J].德州学院学报,2004,20(2):10-12. 被引量:1