期刊文献+

基于加权匹配代价和色彩分割的快速立体匹配 被引量:1

Fast Stereo Matching Based on Weighted Matching Cost and Color Segmentation
下载PDF
导出
摘要 针对现有立体匹配算法复杂、耗时较长的特点,提出了一种基于加权匹配代价和色彩分割的立体匹配算法。算法引入一种基于梯度差算子与绝对差算子加权的匹配代价计算初始视差。根据基于色彩分割的视差假设,采用Mean-Shift算子对图像进行分割,用分割后的图像作为模板优化初始视差。实验结果表明,该算法提高匹配精度和速度,具有良好的实用价值。 The existing stereo matching algorithms are complicated and time-consuming, a novel local method based on weighted matching cost and color segmentation is presented. Firstly a matching cost weighted by absolute differences of gradient and sum of squared difference is applied to calculate the initial disparity of each pixel.Secondly according to the assumption of disparity based on color segmentation, the image segmented by Mean-Shift algorithm is used as a model to optimize the initial disparity.Experimental results show that the proposed algorithm can not only improve the matching accuracy but also increase the matching speed, and the method is of great practical value.
出处 《无线电通信技术》 2015年第2期51-53,75,共4页 Radio Communications Technology
基金 国家自然科学基金项目(61175111) 扬州市2012年产学研合作专项(2012038-8)
关键词 立体匹配 匹配代价 色彩分割 视差 stereo matching matching cost color segment disparity
  • 相关文献

参考文献3

二级参考文献45

  • 1周秀芝,文贡坚,王润生.自适应窗口快速立体匹配[J].计算机学报,2006,29(3):473-479. 被引量:32
  • 2Scharstein D, Szeliski R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision, 2002, 47 ( 1 ) : 7 - 42. 被引量:1
  • 3Brown M Z, Burschka D, Hager G D. Advances in Computational Stereo. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008. 被引量:1
  • 4Bobick A F, Intille S S. Large Occlusion Stereo. International Journal of Computer Vision, 1999, 33(3) : 181 -200. 被引量:1
  • 5Wei Yichen, Quan Long. Region-Based Progressive Stereo Matching //Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 106-113. 被引量:1
  • 6Tao H, Sawhney H, Kumar R. A Global Matching Framework for Stereo Computation// Proc of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada, 2001, Ⅰ : 532 - 539. 被引量:1
  • 7Lin M H, Tomasi C. Surfaces with Occlusions from Layered Stereo. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(8) : 1073 - 1078. 被引量:1
  • 8Comaniciu D, Meer P. Mean Shift : A Robust Approach toward Feature Space Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 (5) : 603 - 619. 被引量:1
  • 9Birchfield S, Tomasi C. A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401 -406. 被引量:1
  • 10Middlebury College Stereo Vision Research Page [ EB/OL]. [2008- 09- 20]. http://vision. middlebury. edu/stereo. 被引量:1

共引文献22

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部