期刊文献+

一种改进的量子神经网络频谱感知算法 被引量:5

A Spectrum Sensing Algorithm in Cognitive Radio Based on Improved Quantum Neural Network
下载PDF
导出
摘要 为了克服传统频谱感知的缺点,提升在低信噪比下的频谱检测性能,提出了一种改进的量子神经网络频谱感知算法。通过提取授权用户信号的特征参数,对量子神经网络进行训练,获取授权信号中数据的不确定性并加以存储、记忆,从而实现周围环境"频谱机会"的检测。为了提高量子神经网络的收敛性、稳定性,对算法进行改进,采用三层Josephson函数作为激励函数,缩短激励函数的饱和区,减少训练过程中出现"假饱和"现象;并在原有的学习目标函数中加入约束条件,使网络权值的调整和量子间隔的更新在学习过程中的相互影响降到最低。通过实验仿真得出,改进后的量子神经网络算法与改进前的算法、BP神经网络检测算法相比,不但在网络收敛速度和稳定性上有了明显提升,而且在低信噪比情况下具有更高的检测概率。 To overcome the shortcomings of traditional spectrum sensing and enhance performance at low SNR,this paper proposes a sensing algorithm based on improved quantum neural network.The basic idea is to extract characteristic parameters by an authorized user signals and train quantum neural network,then to access authorization data signals uncertainty and store ,to achieve ambient "spectrum opportunity" test.ln order to enhance the convergence and stability of quantum neural network ,the quantum neural network is improved. The new algorithm chooses the three-layer Josephson function as transfer function to shorten excitation of the saturation zone and reduce the "false saturation" phenomenon occurred during training; With constraints added in the original learning objectives functions, the interaction of network weights adjustment and updating quantum in during learning process decreases to a mlnimum. As a result, the experiment results show that the improved quantum neural network has a faster convergent speed and a higher stability compared with the quantum neural network and BP neural network.Also,the improved QNN has a hi^her detection probability at the low SNR environment.
出处 《无线电通信技术》 2015年第2期7-11,共5页 Radio Communications Technology
基金 国家自然科学基金项目(60902046)
关键词 认知无线电 频谱感知 量子神经网络 多层激励函数 Josephson函数 cognitive radio spectrum sensing quantum neural network multi-level transfer function Josephson lunction
  • 相关文献

参考文献16

二级参考文献44

  • 1MA Huizhu, LIAO Yanping , JIANG Wei. A Double-threshold Based Collaborative Spectrum Sensing Algorithm [ C ]. Dalian : 2010 2nd Intemational Conference on Signal Procesing Systems, 2010:729 - 732. 被引量:1
  • 2DUAN Lili, ZHANG Lei, CHU Yujun, et al. Beijing: Cooperative Spectrum Sensing with Double Threshold Detection Based on Reputation in Cognitive Radio [ C ]. Wireless Communications, Networking and Mobile Computing, 2009. WiCom'09.5th International Conferenceon, 2009 : 1 - 4. 被引量:1
  • 3ZHANG Wei, MALLIK R K, LETAIEF K B. Cooperative Spectnun sensing Optimization in Cognitive Radio Networks [ C ]. Beijing: Communications, 2008. ICC' 08. IEEE International Conference on ,2008 : 3411 - 3415. 被引量:1
  • 4URKOWITZ H. Energy Detection of Unknown Deterministic Signals[ C ] . Proceedings of IEEE, 1967 : 523 - 231. 被引量:1
  • 5DIGHAM F F, ALOUINI M S, SIMON M K. On the Energy Detection of Unknown Signals over Fading Channels [ C ] . New York : IEEE International Conference on Communications(ICC'03). 2003 : 3575 - 3579. 被引量:1
  • 6YtiCEK T, ARSLAN H. A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications[J]. Communications Surveys & Tutorials ,2009,11 ( 1 ) : 116 - 130. 被引量:1
  • 7SUN Chunhua, ZHANG Wei, LETAIEF K B. Cooperative Spectrum Sensing for Cognitive Radios under Bandwidth Constraints [ C ]. Kowloon: Wireless Communications and Networking Conference, 2007 : 1 - 5. 被引量:1
  • 8ZHU Jiang, XU Zhengguang, WANG Furong, et al. Double Threshold Energy Detection of Cooperative Spectrum Sensing in cognitive radio [ C ]. Singapore : 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2008 : 1 - 5. 被引量:1
  • 9Graupe D, Principles of Artificial Neural Networks [ M ]. 2nd. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2007. 被引量:1
  • 10Purushothaman G, Karayiannis N B. Quantum neural net- works (QNNs) : inherently fuzzy feedforward neural net- works [ J ]. Neural Networks, IEEE Transactions on, 1997, 8(3) :679-693. 被引量:1

共引文献53

同被引文献39

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部