期刊文献+

云计算环境下海量数据挖掘的研究 被引量:1

Study on massive data mining based on the cloud computing environment
下载PDF
导出
摘要 传统的数据挖掘模式和方法已经不能适应如今数据的快速增长,分析了将传统数据挖掘算法与云计算技术相结合的实现过程。通过研究云计算环境下海量数据挖掘的三层模型,发现该模型最大的优点是数据挖掘速度快、可靠性高,而且随着数据量的增加,该模型的优势也愈发明显。 The traditional mode and method of data mining are unable to adapt to the rapid growth of data. The traditional data mining algorithm is analyzed to realize the process of combining with the cloud computing technology. Through the research of massive data mining three layer model based on the cloud computing environment, the advantages of this model are its rapid speed and high accuracy of the data mining. With the increasing of data quantity, the superiority of this model is getting more obvious.
作者 谢志明
出处 《计算机时代》 2015年第2期4-6,共3页 Computer Era
基金 汕尾职业技术学院2014年度院级精品资源共享课题(swzyjpkc14002)
关键词 云计算 传统数据挖掘 算法 海量数据挖掘 模型 cloud computing traditional data mining algorithm massive data mining model
  • 相关文献

参考文献5

二级参考文献27

  • 1宋晓云,苏宏升.一种并行决策树学习方法研究[J].现代电子技术,2007,30(2):141-144. 被引量:4
  • 2HAN J W, KAMBER M, PEI J. Data mining: Concepts and techniques [M]. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2011. 被引量:1
  • 3LUO P. LU K, SHI Z Z, et al, Distributed data mining in grid computing environments [J]. Future Generation Computer Systems, 2007, 23(1 ):84-91. 被引量:1
  • 4LUO P, LU K, HUANG R, et al. A heterogeneous computing system for data mining workflows in mutti-agent environments [J]. Expert Systems, 2006,23(5):258-272. 被引量:1
  • 5ZHUANG F Z, HE Q, SHI Z Z, Multi-agent based on automatic evaluation system for classification algorithm [C]//Proceedings of the International Conference on Information and Automation(ICIA' 08),Jun 20-23,2008, Zhangjiajie, China. Piscataway, NJ, USA:IEEE 2008: 264-269. 被引量:1
  • 6HAMEENANTT(LA T, GUAN X L, CAROTHERS J D, et al. The flexible hypercube: A new fault-tolerant architecture for parallel computing [J]. Journal of Parallel and Distributed Computing, 1996,37(2): 213-220. 被引量:1
  • 7GOUDREAU M W, LANG K, RAO S B, et al. Portable and efficient parallel computing using the BSP model [J]. IEEE Transactions on Computers, 1999,48(7):670-689. 被引量:1
  • 8CHU CT, KIM S K, LIN YA, et al. Map-reduce for machine learning on multicore [C]//Proceedings of the 21 st Annual Conference on Neural Information Processing Systems (NIPS' 07), Dec 3-6,2007,Vancouver, Canada. Berlin, Germany: Springer-Verlag, 2007:281-288. 被引量:1
  • 9BORTHAKUR D. The hadoop distributed file system: Architecture and design [R], The Apache Software Foundation, 2007. 被引量:1
  • 10DEAN J, GHEMAWAT S. MapReduce: Simplified data processing on large clusters [J]. Communications of the ACM, 2008,51 (1): 107-113. 被引量:1

共引文献116

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部