期刊文献+

基于高频子带特征的咳嗽检测方法 被引量:1

Cough detection based on high-frequency subbandfeatures
下载PDF
导出
摘要 咳嗽是呼吸道疾病中一种常见的症状,基于模式识别算法可以对语音信号中咳嗽对象的频度和强度进行客观化分析,进而帮助临床咳嗽的诊断及病程跟踪.在临床录制的连续语音信号中检测出咳嗽对象是咳嗽诊断及分析的基础.本文将咳嗽检测视为模式识别中的二分类问题,借助于分类器将咳嗽对象从背景信号中分离.在深入研究咳嗽频谱分布的基础上,提出一种新的基于高频子带的特征提取方法(High-frequency subband features method),在提取咳嗽信号特征之前,使用高频滤波器获取高频部分信号.在合成实验数据的过程中使用了不同的噪声类型和信噪比来组成不同的实验环境,并且在每种实验环境下对几种特征提取方法进行了评价与分析.实验结果表明,相比于常见的语音信号特征,结合基于高频子带特征的咳嗽检测方法在检测正确率等性能指标上有显著地提升. Cough is a very common symptom in respiratory diseases.Objective analysis on the frequency and intensity of cough by pattern recognition algorithm can provide more valuable clinical information for patients with chronic cough and help them with cough tracking and diagnosis.Cough detection is the basis of the diagnosis and analysis of cough in clinical continuous recordings.In this article,we consider cough detection problem as a binary classification ones and make use of classifier to segregate cough from background noise for the purpose of cough detection.We propose a novel high-frequency subband features method on the basis of in-depth study of the spectral distribution of cough.It is found that the energy of cough signal is distributed widely and concentrated in the high frequency region,which is very different from spectral patterns of speech signals.So in experiments,we firstly extract subband features of which frequency region varies from low frequency to high frequency using filter banks,and then find the performance of high frequency-subband features which is superior to that of low frequency-subband.Finally,the high-fre-quency subband method uses high-frequency filter to get corresponding high frequency signal before extracting the features of cough.The method synthesizes the experimental data under the condition of different noisy type and SNR(signal to noise ratio),then compares and analyses the performance of different feature extraction methods under specific noisy conditions.Experimental results demonstrate that compared with traditional audio feature extraction method,the method based on high-frequency subband features achieves substantial performance improvement in recognition.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期157-164,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61273305 81274007) 中央高校基本科研业务费专项资金
关键词 子带 咳嗽检测 特征提取 gammatone滤波器组 模式识别 subband cough detection feature extraction gammatone filter banks pattern recognition
  • 相关文献

参考文献18

  • 1Morice A H, Fontana G A, Belvisi M G, et al. ERS guidelines on the assessment of cough. European Respiratory Journal, 2007, 29 (6): 1256-1276. 被引量:1
  • 2Matos S,Birring S S,Pavord I D. Detection of cough signals in continuous audio recordings using hidden Markov models. IEEE Transactions on Biomedical Engineering, 2006,53 ( 6 ) : 1078 - 1083. 被引量:1
  • 3Matos S, Birring S S, Pavord I D, et al. An automated system for 24-h monitoring of cough frequency.. The leicestercough monitor. IEEE Transactions on Biomedical Engineering, 2007,54 (8):-1472-1478. 被引量:1
  • 4Shin S H, Hashimoto T, Hatano S. Automatic detection system for cough sounds as a symptom of abnormal health condition. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(4) :486-493. 被引量:1
  • 5DrugmanT, Ubrain J, Bauwens N, et al. Objective study of sensor relevance for automatic cough de- tection. IEEE Journal of Biomedical and Health Informatics, 2013,17 ( 3 ) .. 699 - 707. 被引量:1
  • 6Jin Z Z, Wang D L. A supervised learning approach to monaural segregation of reverberant speech. IEEE Transactions on Audio, Speech, and Language Processing,2009,17(4) :625-638. 被引量:1
  • 7Hu G,Wang D L. A Tandem algorithm for pitch estimation and voiced speech segregation. IEEE Transactions on Audio, Speech, and Language Processing, 2010,18(8) : 2067 - 2079. 被引量:1
  • 8Wang Y X, Han K, Wang D L. Exploring monaural features for classification based speech segregation. IEEE Transactions on Audio, Speech, and Language Processing, 2013,21 (2) :270-279. 被引量:1
  • 9Wang Y X, Wang D L. Towardsscaling up classificatiombased speech separation. IEEE Transactions on Audio, Speech, and Language Processing, 2013,21 (7) : 1381- 1390. 被引量:1
  • 10张志飞,卢晶,邹海山.传声器阵列近场波束算法鲁棒性研究[J].南京大学学报(自然科学版),2014,50(1):46-53. 被引量:5

二级参考文献23

  • 1王颖,朱大奎.中国的潮滩[J].第四纪研究,1990,10(4):291-300. 被引量:72
  • 2Ryan J G. Criterion for the minimum source distance at which plane-wave beamforming can applied. The Journal of the Acoustical Society of America, 1998,104( 1 ) : 595 - 598. 被引量:1
  • 3Benesty J, Chen J, Huang Y. Microphone array signal processing. Berlin: Springer-Verlag, 2008, 39-83. 被引量:1
  • 4Hoshuyama O, Sugiyama A, Hirano A. A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Transactions on Signal Processing, 1999,47(10) :2677-2684. 被引量:1
  • 5Peng K, Lu J, Xu B L. Robust adaptive beamforming in the frequency domain by using a small microphone array. Journal of Nanjing University ( Natural Sciences ), 2004, 4 ( 40 ) .. 446-453. 被引量:1
  • 6Bitzer J, Simmer K U, Kammeyer K D.Multichannel noise reduction-algorithms and theoretical limits. Process Eurour Signal Processing Confernce, 1998, (5) ; 105 - 108. 被引量:1
  • 7Kennedy R A, Abhayapala T D, Ward D B. Broadband nearfield beamforming using a radial beampattern transformation. IEEE Transactions on Signal Processing, 1998(846) .. 2147-2156. 被引量:1
  • 8Doclo S, Moonen M. Superdirective beamforming robust against microphone mismatch. IEEE Transactions on Audio, Speech, and Language Processing, 2007,15 (2) :617-631. 被引量:1
  • 9Ryan J, Goubran R. Array optimization applied in the near field of a microphone array. IEEE Transactions on Audio, Speech, and Language Processing,2000,8(2) .. 173-176. 被引量:1
  • 10McCowan I A, Marro C, Mauuary L. Robust speech recognition using near-field superdirective beamforming with post-filtering. In.. Proceedings of the 2000 IEEE International Conference on Acoustics,Speech, and Signal Processing, 2000, (3) :1723-1726. 被引量:1

共引文献7

同被引文献2

引证文献1

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部