期刊文献+

一种面向权威度和多样性的自动学术调研框架 被引量:3

An Automatic Literature Survey Framework by Exploring Prestige and Diversity
下载PDF
导出
摘要 对某个领域或问题进行学术调研是科研工作的基本需求,然而随着越来越多的科研人员投身研究,大量的学术成果不断涌现,信息过载使得快速有效的调研工作变得越发困难.文中旨在提出一种自动学术调研框架,基于用户给定的关键词查询推荐最值得调研的论文及作者,以辅助科研人员高效完成调研任务.面向某个领域或问题最值得调研的论文和作者,需要具备显著的权威度且能覆盖该领域或问题的不同方面.因此,文中提出了一种面向权威度和多样性的两阶段排序模型:首先引入了MutualRank模型,同时考虑论文及作者信息以更好地建模他们的权威度;接着利用PDRank模型融合权威度和差异性两个因素对论文和作者排序,最终得到权威度高、覆盖面广的调研结果.通过实验作者证明了MutualRank对于权威度的学习效果优于传统的PageRank,同时基于两阶段排序模型得到的调研结果也优于已有的基准方法. Literature survey of domains or topics is the foundation of scientific research. Along with more and more researchers devoting themselves to their work, plenty of academic achievements come out continuously, which brings more difficulties to effective and efficient surveys.This paper aims at developing an automatic literature survey framework to help researchers survey effectively. This framework recommends papers and authors which are most worthwhile surveyed based on the keywords given by the user. These recommended papers and authors must be prestigious and cover different aspects of the domain or problem. This paper proposes a two-phase ranking model by simultaneously exploring prestige and diversity. Firstly we introduce MutualRank to learn the prestige of the papers as well as the authors by leveraging the two heterogeneous types of information. We then rank the authors and papers by using PDRank model which combines the prestige and diversity. Finally, we provide users with recommended survey results with high prestige and diversity. Experiments show that MutualRank is better than PageRank on modeling prestige, and the superior to the existing baseline methods. survey results based on two-phase ranking model is
出处 《计算机学报》 EI CSCD 北大核心 2015年第2期365-373,共9页 Chinese Journal of Computers
基金 国家自然科学基金(2013CB329601 61100175) 国家"二四二"信息安全计划(2011F45 2012G129) 国家科技支撑计划(2012BAH39B04 2012BAH39B02) 欧盟第七研发框架计划(FP7-PIRSES-318939)资助~~
关键词 MutualRank PDRank 自动学术调研 多样性排序 社会计算 社交网络 MutualRank PDRank automatic literature survey diversity ranking social computingsocial networks
  • 相关文献

参考文献15

  • 1Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the Web//Proceedings of the 7th International World Wide Web Conference. Brisbane, Australia, 1998:161 -172. 被引量:1
  • 2Berkhin P. Survey: A survey on PageRank computing. Internet Mathematics, 2005, 2(1): 73-120. 被引量:1
  • 3Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press, 2008. 被引量:1
  • 4Kleinberg J M. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46(5): 604-632. 被引量:1
  • 5Carbonell J G, Goldstein J. The use of MMR, diversity- based reranking for reordering documents and producing summaries//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA, 1998:335-336. 被引量:1
  • 6Zhu Xiao-Jin, Goldberg A, Gael J V, Andrzejewski D. Improving diversity in ranking using absorbing random walks//Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL). New York, USA, 2007:97-104. 被引量:1
  • 7杜攀..保持信息多样性的多目标排序技术研究[D].中国科学院大学,2011:
  • 8Mei Qiao-Zhu, Guo Jian, Radev D R. DivRank: The inter play of prestige and diversity in information networks// Proceedings of the Knowledge Discovery and Data Mining (KDD). New York, USA, 2010:1009-1018. 被引量:1
  • 9Du Pan, Guo Jia-Feng, Cheng Xue Qi. Decayed DivRank: Capturing relevance, diversity and prestige in information networks//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA, 2011:1239-1240. 被引量:1
  • 10Han Jia-Wei, Sun Yi Zhou, Yah Xi-Feng, Yu P S. Mining knowledge from data: An information network analysis approach//Proceedings of the International Conference on Data Engineering (ICDE). Washington DC, USA, 2012: 1214-1217. 被引量:1

同被引文献19

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部