摘要
利用热重分析仪,对比了不同反应温度、不同水蒸气浓度对煅烧石灰石碳酸化反应的影响。碳酸化反应温度在500℃时,反应初期水蒸气对碳酸化反应的影响并不明显,反应10 min之后,在含有1.5%、10%和20%(体积分数)水蒸气条件下碳酸化转化率比无水蒸气条件下转化率分别提高了19.8%、27.2%和30.5%。水蒸气的存在有助于提高碳酸化反应转化率,但随着水蒸气浓度的增加转化率增加幅度减小。利用随机孔隙模型,对产物层扩散阶段扩散系数及反应活化能进行了计算。高温条件下,气氛中含有1.5%的水蒸气使反应活化能从237.7 k J·mol-1降低到179.9 k J·mol-1,提高水蒸气浓度到10%和20%后,反应活化能从156.6 k J·mol-1降低到148.6 k J·mol-1。不同水蒸气浓度条件下,碳酸化反应存在两个明显特征:一是大约在550℃处存在一个明显扩散系数的斜率变化,这一温度与气氛中是否存在水蒸气无关;另一特征是随着反应温度的提高,水蒸气的促进作用减弱。依据实验和模型计算结果,推测了当反应处于产物层扩散阶段时水蒸气对碳酸化反应影响的作用机理。
Steam is present in combustion flue gas, oxy-fuel combustor/calciner and fuel gas. Some previous works in this field have examined the reactivity of calcium oxide in the presence of steam. There is general agreement that the presence of steam increases the rate of carbonation even at low concentrations. However, there is no description about the effect of steam on the carbonation reaction of calcined limestone. The effects of temperature, concentration of steam on carbonation were investigated in a thermogravimetric analyzer. The understanding of the mechanisms participating in the carbonation reaction could be arrived at through the use of model interpretations of the rate controlling process. The experimental data were analyzed by means of the random pore model. During carbonation reaction, a very initial rapid reaction was followed by the second stage of the reaction occurring in the next slower regime. The experiment results showed that the effect of steam on carbonation could be neglected during the first stage of reaction. However, the conversion of carbonation in the presence of 1.5%(vol), 10%(vol) and 20%(vol) steam were 19.8%, 27.2%and 30.5%higher than the conversion without steam after 10 min during the second stage of reaction at 500℃. Steam was beneficial to enhancing the conversion of carbonation, but the extent of increase became not significant with increasing concentration of steam. The linearity of the second stage reaction data strongly suggested that this stage was controlled by a diffusion process occurring in a layer of calcium carbonate surrounding the calcium oxide in the pores of the solid. The parameters related to effective product layer diffusivities were plotted in Arrhenius form and the changes in activation energy at various steam concentrations were also shown. Comparison with the experimental effective diffusivities calculated for the carbonation reaction showed that the activation energies in the lower temperature range were in agreement with those obtained in the co
出处
《化工学报》
EI
CAS
CSCD
北大核心
2015年第3期1088-1096,共9页
CIESC Journal
基金
国家杰出青年科学基金项目(51025624)
111引智项目(B12034)
中央高校基金项目(2014QN08)~~
关键词
二氧化碳捕集
化学反应
催化
产物层扩散系数
活化能
CO2 capture
chemical reaction
catalysis
product layer diffusion coefficient
activation energy