期刊文献+

一种考虑空间关联工艺偏差的统计静态时序分析方法 被引量:1

A Statistical Static Timing Analysis Incorporating Process Variations with Spatial Correlations
下载PDF
导出
摘要 为了准确评估工艺参数偏差对电路延时的影响,该文提出一种考虑空间关联工艺偏差的统计静态时序分析方法。该方法采用一种考虑非高斯分布工艺参数的二阶延时模型,通过引入临时变量,将2维非线性模型降阶为1维线性模型;再通过计算到达时间的紧密度概率、均值、二阶矩、方差及敏感度系数,完成了非线性非高斯延时表达式的求和、求极大值操作。经ISCAS89电路集测试表明,与蒙特卡洛仿真(MC)相比,该方法对应延时分布的均值、标准差、5%延时点及95%延时点的平均相对误差分别为0.81%,-0.72%,2.23%及-0.05%,而运行时间仅为蒙特卡洛仿真的0.21%,证明该方法具有较高的准确度和较快的运行速度。 To evaluate effects of process variations on circuit delay accurately, this study proposes a Statistical Static Timing Analysis(SSTA) which incorporates process variations with spatial correlations. The algorithm applies a second order delay model that taking into account the non-Gaussian parameters- by inducting the notion of ‘conditional variables', the 2D non-linear delay model is translated into 1D linear one; and by computing the tightness probability, mean, variance, second-order moment and sensitivity coefficients of the circuit arrival time, the sum and max operations of non-linear and non-Gaussian delay expressions are implemented. For the ISCAS89 benchmark circuits, as compared to Monte Carlo(MC) simulation, the average errors of 0.81%,-0.72%, 2.23% and-0.05%, in the mean, variance, 5% and 95% quantile points of the circuit delay are obtained respectively for the proposed method. The runtime of the proposed method is about 0.21% of the value of Monte Carlo simulation. The experimental results prove that the high accuracy of the SSTA is reliable.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第2期468-476,共9页 Journal of Electronics & Information Technology
基金 国家科技重大专项(2013ZX03006004) 国家自然科学基金(61106033)资助课题
关键词 集成电路 统计静态时序分析 空间关联 非高斯非线性 工艺偏差 延时模型 Integrated Circuit(IC) Statistical Static Timing Analysis(SSTA) Spatial correlations Nongaussianity and non-linearity Process variations Delay model
  • 相关文献

参考文献16

  • 1Tang Q, Rodriguez J, Zjajo A, et al. Statistical transistor-level timing analysis using a direct random differentialequation solver [J]. IEEE Transactions on Computer-AidedDesign of Integrated Circuits and Systems, 2014, 33(2):210-223. 被引量:1
  • 2Shi B and Srivastava A. Thermal stress aware 3D-ICstatistical static timing analysis[C]. Proceedings of the 23rdACM International Conference on Great Lakes Symposiumon VLSI, Paris, France, 2013: 281-286. 被引量:1
  • 3Li B, Chen N, Xu Y, et al" On timing model extraction andhierarchical statistical timing analysis[J]. IEEE Transactionson Computer-Aided Design of Integrated Circuits and Systems,2013, 32(3): 367-380. 被引量:1
  • 4Zhang Xiao-lin, Ye Jing, Hu Yu, et al. Capturing post-siliconvariation by layout-aware path-delay testing[C]. Proceedingsof IEEE/EDAA Design, Automation h Test in Europe,Grenoble, France, 2013: 288-291. 被引量:1
  • 5Wagner M and Wunderlich H. Efficient variation-awarestatistical dynamic timing analysis for delay test applications[C]. Proceedings of IEEE/EDAA Design, Automation h Testin Europe, Grenoble, France, 2013: 276-281. 被引量:1
  • 6Amin C, Menezes N, Killpack K, et al.. Statistical statictiming analysis: how simple can we get?[C]. Proceedings ofIEEE/ACM Design Automation Conference, San Diego, USA,2005: 652-657. 被引量:1
  • 7Chang H and Sapatnekar S. Statistical timing analysisconsidering spatial correlations using a single PERT-liketraversal[C]. Proceedings of IEEE/ACM InternationalConference on Computer Aided Design, San Jose, USA, 2003:621-625. 被引量:1
  • 8Zhan Y, Strojwas A, Li X, et al. Correlation-aware statisticaltiming analysis with non-Gaussian delay distributions[C].Proceedings of IEEE/ACM Design Automation Conference,San Diego, USA, 2005: 77-82. 被引量:1
  • 9Singh J and Sapatnekar S. A scalable statistical static timinganalyzer incorporating correlated non-Gaussian andGaussian parameter variations[J]. IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems,2008,27(1): 160-173. 被引量:1
  • 10Kirkpatrick T and Clark N. PERT as an aid to logic design [J].IBM Journal of Research and Development, 1966, 10(2):135-141. 被引量:1

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部