期刊文献+

基于复数因子分析模型的步进频数据压缩感知 被引量:2

Compressive Sensing Using Complex Factor Analysis for Stepped-frequency Data
下载PDF
导出
摘要 认知雷达发射高距离分辨率步进频信号通常需要较长的观测时间。为了节省时间资源,该文提出一种贝叶斯重构算法,用较少的步进频信号脉冲得到的频点缺失频域数据,重构出相应的全带宽频域数据。首先利用复数贝塔过程因子分析(Complex Beta Process Factor Analysis,CBPFA)模型对一组全带宽频域数据进行统计建模,求解得到其概率密度函数;然后在目标被跟踪且姿态变化不大的情况下,只发射步进频信号的部分脉冲,根据先前CBPFA模型得到的概率密度函数,对频点缺失的频域数据利用压缩感知理论和贝叶斯准则解析地重构出相应的全带宽频域数据。基于实测1维高分辨距离(High Range Resolution,HRR)数据的重构实验,证明了该文提出方法的性能。 It usually takes a long observing time when a cognitive radar transmits the High-Range-Resolution(HRR) stepped-frequency signal. To save time, partial pulses of the stepped-frequency signal are transmitted to obtain the incomplete frequency data, and a Bayesian reconstruction algorithm is proposed to reconstruct the corresponding full-band frequency data. Firstly, the Complex Beta Process Factor Analysis(CBPFA) model is utilized to statistically model a set of full-band frequency data, whose probability density function(pdf) can be learned from this CBPFA model. Secondly, when the target is tracked and its attitude changes not much, the cognitive radar can just transmit the partial pulses of the stepped-frequency signal, and the corresponding full-band frequency data can be analytically reconstructed from the incomplete frequency data via the Compressive Sensing(CS) method and Bayesian criterion based on the previous pdf learned with CBPFA model. The reconstruction experiments of the measured HRR data demonstrate the performance of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第2期315-321,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271024 61201296 61322103) 全国优秀博士学位论文作者专项资金(FANEDD-201156)资助课题
关键词 认知雷达 步进频 贝叶斯重构算法 压缩感知 因子分析模型 Cognitive radar Stepped-frequency Bayesian reconstruction algorithm Compressive Sensing(CS) Factor analysis model
  • 相关文献

参考文献16

  • 1高昭昭..高分辨ISAR成像新技术研究[D].西安电子科技大学,2009:
  • 2Zhang L, Qiao Z J, Xing M D, et al. High-resolution ISARimaging with sparse stepped-frequency waveforms[J]. IEEETransactions on Geoscience and Remote Sensing, 2011,49(11): 4630-4635. 被引量:1
  • 3Candes E J, Romberg J, and Tao T. Robust uncertaintyprinciples: exact signal reconstruction from highly incompletefrequency information[J]. IEEE Transactions on InformationTheory, 2006, 52(2): 489-509. 被引量:1
  • 4马坚伟,徐杰,鲍跃全,于四伟.压缩感知及其应用:从稀疏约束到低秩约束优化[J].信号处理,2012,28(5):609-623. 被引量:52
  • 5Tropp J A and Wright S J. Computational methods forsparse solution of linear inverse problems[J]. Proceedings ofthe IEEE, Special Issue on Applications of CompressiveSensing & Sparse Representation, 2010, 98(6): 948~958. 被引量:1
  • 6Hu L, Shi Z G, Zhou J X,et al.. Compressed sensing ofcomplex sinusoids: an approach based on dictionaryrefinement [J]. IEEE Transactions on Signal Processing, 2012,60(7): 3809-3822. 被引量:1
  • 7Chavali P and Nehorai A. Scheduling and power allocation ina cognitive radar network for multiple-target tracking]J].IEEE Transactions on Signal Processing, 2012, 60(2):715-729. 被引量:1
  • 8黎湘,范梅梅.认知雷达及其关键技术研究进展[J].电子学报,2012,40(9):1863-1870. 被引量:77
  • 9Du L, Liu H W, Bao Z, et al.. A two-distribution compoundedstatistical model for radar HRRP target recognition[J] ? IEEETransactions on Signal Processing, 2006, 54(6): 2226-2238. 被引量:1
  • 10Paisley J and Carin L. Nonparametric factor analysis withBeta process priors[Cj. International Conference on MachineLeaning (ICML), 2009: 777-784. 被引量:1

二级参考文献123

  • 1赵知劲,郑仕链,孔宪正.认知无线电中频谱感知技术[J].现代雷达,2008,30(5):65-69. 被引量:8
  • 2卢建斌,胡卫东,郁文贤.多功能相控阵雷达实时任务调度研究[J].电子学报,2006,34(4):732-736. 被引量:56
  • 3J. Ma, F. X. Le Dimet. Deblurring from highly incomplete measurements for remote sensing [ J ]. IEEE. T. Geosci. Remote,2009,47 (3) :792- 802. 被引量:1
  • 4J. Ma. Single-pixel remote sensing [ J]. Geoscience and Remote Sensing Letters, IEEE,2009,6(2) :199-203. 被引量:1
  • 5E. J. Candes, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements [ J]. Com- mun. Pur. Appl. Math,2006,59 (8) : 1207-1223. 被引量:1
  • 6E. J. Candes. Compressive sampling[ C] ///Proceedings of International Congress of Mathematicians. Ztirich, Switz- erland: European Mathematical Society Publishing Hou- se ,2006. 1433-1452. 被引量:1
  • 7E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incom-plete frequency information [J]. IEEE. T. Inform. The- ory, 2006,52 ( 2 ) : 489-509. 被引量:1
  • 8E. J. Candes, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies [ J ]. IEEE. T. Inform. Theory,2006,52(12):5406-5425. 被引量:1
  • 9D. L. Donoho. Compressed sensing [J]. IEEE. T. In- form. Theory,2006,52(4) : 1289-1306. 被引量:1
  • 10D. L. Donoho, Y. Tsaig. Fast solution of ll-norm minimi- zation problems when the solution may be sparse [ R ]. Department of Statistics, Stanford University, USA,2008. 被引量:1

共引文献127

同被引文献14

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部