摘要
设n(k)为满足如下条件的最小整数:给定平面上任意n个格点,其中必存在k个点的形心也是格点.文献[4]提出关于确定n(4)的未解问题.本文给出解答n(4)=13,并进一步给出相关的一些问题的结果.
Let n(k) be the smallest integer n such that, given any n lattice points in the plane, some k of them have a lattice-point centroid. Erickson posted an open problem on determining n(4) in [4], This note gives an answer that n(4) = 13. Furthermore, some related results are presented.
出处
《运筹学学报》
CSCD
北大核心
2002年第2期69-71,共3页
Operations Research Transactions
关键词
组合论
格点
形心
combinatorics, lattice point, centroid.