期刊文献+

小波域中双稀疏的单幅图像超分辨 被引量:4

Single image super-resolution in wavelet domain with double sparse
原文传递
导出
摘要 目的过去几年,基于稀疏表示的单幅图像超分辨获得了广泛的研究,提出了一种小波域中双稀疏的图像超分辨方法。方法由小波域中高频图像的稀疏性及高频图像块在空间冗余字典下表示系数的稀疏性,建立了双稀疏的超分辨模型,恢复出高分辨率图像的细节系数;然后利用小波的多尺度性及低分辨率图像可作为高分辨率图像低频系数的逼近的假设,超分辨图像由低分辨率图像的小波分解和估计的高分辨率图像的高频系数经过二层逆小波变换来重构。结果通过大量的实验发现,双稀疏的方法不仅较好地恢复了图像的局部纹理与边缘,且在噪声图像的超分辨上也获得了不错的效果。结论与现在流行的使用稀疏表示的超分辨方法相比,双稀疏的方法对噪声图像的超分辨效果更好,且计算复杂度减小。 Objective Super-resolution is a challenging technique for recovering lost information according to natural image priori. As an important priori, sparse has been widely studied in the field of image processing, such as in image recovery, inpainting, demosaicing, and denoising. Given the development of compressed sensing theory and the Ll op- timization method, a large number of super resolution methods have been proposed based on sparse representation. An example is the single image super-resolution based on sparse representation, which has been widely studied in recent years. Method Based on the super-resolution model through sparse representation, where the feature image patch can be represented sparsely, a novel method conducted in the wavelet domain is proposed in this work. Our method is based on the sparse of high-frequency image patches and high-frequency image patches in redundant dictionaries. First, a decomposed coefficient image is obtained after using the discrete wavelet transform in a low-resolution image. Second, in connection with the high-frequency coefficients of the low-resolution image, a double sparse model with super-resolution is established to recover the detail coefficients of a high-resolution image correspondingly. Third, the decomposed coefficients of the low- resolution image and the recovered high-frequency coefficients of the high-resolution image are merged into wavelet coeffi- cients for second floor decomposition. Finally, with the multi-scale property of wavelet and the assumption that a low-reso- lution image can be used as a high-resolution image of low frequency coefficient approximation, a super-resolution image is reconstructed with two layers of inverse wavelet transformation with low-resolution image wavelet decomposition and esti-mated high-frequency coefficients of high-resolution images. In the model solving process, we adopt a fast solving method called the constrained splitting Bregman method, which is widely used to solve the L1 problem. Unlike the method for joint f
出处 《中国图象图形学报》 CSCD 北大核心 2014年第11期1570-1576,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(11171014) 西北农林科技大学博士科研启动基金项目(2013BSJJ032)
关键词 小波域 双稀疏 稀疏表示 超分辨 wavelet domain double sparse sparse representation super-resolution
  • 相关文献

参考文献15

  • 1Hardie R C, Bamard K J, Armstrong E E. Jiont map registration and high-resolution image estimation using a sequence of under- sampled images [ J]. IEEE Transactions on Image Processing, 1997, 6(12) : 1621-1633. 被引量:1
  • 2Farsiu S, Robinson P, Elad M, et al. Fast and robust multi- frame super-resolution [ J ]. IEEE Transactions on Image Process- ing, 2001, 13(10) : 1327-1344. 被引量:1
  • 3邵文泽,韦志辉.基于广义Huber-MRF图像建模的超分辨率复原算法[J].软件学报,2007,18(10):2434-2444. 被引量:16
  • 4黄全亮,刘水清,孙金海,陈柯.融合学习算法的单帧图像超分辨率复原[J].计算机工程与应用,2013,49(23):186-190. 被引量:5
  • 5He H Y, Li J H, Luo X N. Single image super-resolution using gaussian mixture model[ C]//Proceedings of International Con- ference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012: 1916-1919. 被引量:1
  • 6Ni K S, Nguyen T Q. Image superresolution using support vector regression [ J]. IEEE Transactions on Image Processing, 2007, 16(6) : 1596-1610. 被引量:1
  • 7浦剑,张军平.基于词典学习和稀疏表示的超分辨率方法[J].模式识别与人工智能,2010,23(3):335-340. 被引量:43
  • 8Yang J C, Wright J, Huang T, et 81. Image super-resolution via sparse representation [ J ]. IEEE Transactions on Image Process- ing, 2010,19(20): 2861-2873. 被引量:1
  • 9Zeyde R, Elad M, Protter M. On single image scaleup using sparse representation [ C ]//Proceedings of International Confer- ence on Curves and Surfaces. Avignon, France : Springer, 2011 : 132-146. 被引量:1
  • 10Dong W S, Zhang L, Shi G, et al. Image deblurring and super- resolution by adaptive sparse domain selection and adaptive regu- larization [J]. IEEE Transactions on Image Processing, 2011, 20(7) : 1838-1857. 被引量:1

二级参考文献35

  • 1孔祥龙,李玉同,远晓辉,于全芝,郑志远,梁文锡,王兆华,魏志义,张杰.Lucy-Richardson算法用于针孔图像的恢复[J].物理学报,2006,55(5):2364-2370. 被引量:20
  • 2Tipping M E,Bishop C M.Bayesian Image Super-Resolution//Becker S,Thrun S,Obermayer K,eds.Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2003,XVI:1279-1286. 被引量:1
  • 3Capel D P.Image Mosaicing and Super-Resolution.Cambridge,UK:University of Oxford,2001. 被引量:1
  • 4Farsiu S,Robinson M D,Elad M,et al.Fast and Robust Multiframe Super-Resolution.IEEE Trans on Image Processing,2004,13(10):1327-1344. 被引量:1
  • 5Freeman W T,Pasztor E C,Carmichael O T.Learning Low-Level Vision.International Journal of Computer Vision,2000,40 (1):25 -47. 被引量:1
  • 6Freeman W T,Jones T R,Pasztor E C.Example-Based Super-Resolution.IEEE Computer Graphics and Applications,2002,22 (2):56-65. 被引量:1
  • 7Liu Ce,Shum H Y,Zhang Changshui.Two-Step Approach to Hallucinating Faces:Global Parametric Model and Local Nonparametric Model// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Hawaii,USA,2001,Ⅰ:192-198. 被引量:1
  • 8Chang Hong,Yeung D Y,Xiong Yimin.Super-Resolution through Neighbor Embedding//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,USA,2004,Ⅰ:275-282. 被引量:1
  • 9Fan Wei,Yeung D Y.Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds//Proc of the IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition.Minneapolis,USA,2007:18-23. 被引量:1
  • 10Chan T M,Zhang Junping,Pu Jian,et al.Neighbor Embedding Based Super-Resolution Algorithm through Edge Detection and Feature Selection.Pattern Recognition Letters,2009,30(5):494 -502. 被引量:1

共引文献61

同被引文献62

  • 1刘志刚,刘代志.基于小波变换的图象放大方法再探讨[J].中国图象图形学报(A辑),2003,8(4):403-408. 被引量:19
  • 2金海丁,周孝宽.数字图像自适应插值法[J].激光与红外,2006,36(9):907-910. 被引量:15
  • 3董卫军,周明全,耿国华.一种新的基于小波变换的图像放大算法[J].计算机应用与软件,2007,24(4):18-20. 被引量:7
  • 4Zhang X J, Wu X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Transactions on Image Processing, 2008, 17(6): 887-896. [DOI: 10.1109/TIP.2008.924279]. 被引量:1
  • 5Chavez R H, Ponomaryov V. Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1777-1781. [DOI: 10.1109/LGRS.2014.2308905]. 被引量:1
  • 6Tai Y W, Liu S C, Brown M, et al. Super resolution using edge prior and single image detail synthesis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010: 2400-2407. [DOI: 10.1109/CVPR.2010.5539933]. 被引量:1
  • 7Zhang K B, Gao X B, Tao D C, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544-4556. [DOI: 10.1109/TIP.2012.2208977]. 被引量:1
  • 8Zeyde R, Elad M, Protter M. On Single Image Scale-up Using Sparse-Representations[M]. Berlin: Springer, 2012: 711-730. [DOI: 10.1007/978-3-642-27413-8_47]. 被引量:1
  • 9Dong W S, Zhang D, Shi G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857. [DOI: 10.1109/TIP.2011.2108306]. 被引量:1
  • 10Nazzal M, Ozkaramanli H. Wavelet domain dictionary learning-based single image super-resolution[J]. Signal, Image and Video Processing, 2014: 1-11. [DOI: 10.1007/s11760-013-0602-7]. 被引量:1

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部