期刊文献+

基于GA改进DHMM和KPCA-RS的滚动轴承智能诊断方法研究 被引量:3

InteUigent Fault Diagnosis Based on GA-DHMM and KPCA-RS of Rolling Bearing
下载PDF
导出
摘要 为实现滚动轴承故障智能诊断,提出了一种基于核主元分析法(KPCA)、粗糙集(RS)和遗传算法(GA)改进离散隐马尔科夫模型(DHMM)的智能诊断方法。通过使用混合核函数的KPCA和RS对时域、频域参数进行约简,构造敏感性高、稳定性强,并能准确表征轴承状态的特征参数矩阵。应用GA优化了DHMM,克服了DHMM训练算法容易陷入局部极小的缺点。最后应用GA优化的DHMM训练算法得到的滚动轴承各状态下的DHMM,并通过比较测试样本在各DHMM下的对数似然概率,实现了轴承故障类型的有效识别。实验结果表明,该方法可以有效地识别滚动轴承的状态,具有较强的适用性。 An intelligent diagnosis method for rolling bearing is proposed,which is constructed on the basis of kernel principal component analysis(KPCA),rough set(RS) and a discrete hidden Markov model(DHMM) optimized by genetic algorithm(GA).KPCA-RS is used to optimize the time domain and frequency domain characteristic parameters and construct a more sensitive and stable characteristic parameters matrix which can accurately characterize the bearing condition.Additionally,DHMM is optimized by GA to solve the problem that DHMM training algorithm is easy to fall into local minimum.The DHMM based on GA can be obtained under each rolling bearing state.The fault state can be identified by calculating and comparing the logarithmic likelihood probability of each DHMM of testing data.The experimental results show that the method can effectively identify the rolling bearing fault state with high recognition accuracy.
出处 《测控技术》 CSCD 北大核心 2014年第11期21-24,28,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(51375037 51075023) 国家973项目(2012CB026000) 教育部新世纪优秀人才支持计划(NCET-12-0759)
关键词 KPCA RS GA DHMM 故障诊断 KPCA RS GA DHMM fault diagnosis
  • 相关文献

参考文献12

  • 1冯长健.HMM动态模式识别理论、方法以及在旋转机械故障诊断中的应用[D].杭州:浙江大学,2002. 被引量:2
  • 2Jang G H, Jeong S W. Stability analysis of a rotating system due to the effect of ball bearing waviness [ J ]. Journal of Tri- bology,2003,125 ( 1 ) :91 - 101. 被引量:1
  • 3Wang H Q, Chen P. Intelligent diagnosis method for a cen- trifugal pump using features of vibration signals [ J ]. Neural Computing and Applications,2009,18 (4) : 397 - 405. 被引量:1
  • 4Meng Y R. Research on KPCA fault diagnosis method based on multi-domain features [ C]//International Conference on Consumer Electronics, Communications and Networks. 2011 : 642 - 645. 被引量:1
  • 5Fazli S, Afrouzian R, Seyedarabi H. A combined KPCA and SVM method for basic emotional expressions recognition [ C ]//International Conference on Machine Vision. 2009 : 84 - 88. 被引量:1
  • 6Li Q M, Zhao T,Zhang L, et al. Mechanical fault diagnostics of onload tap changer within power transformers based on hidden Markov model[ J ]. IEEE Transactions on Power De- livery ,2012,27 ( 2 ) :596 - 601. 被引量:1
  • 7岳夏..基于HMM的复杂条件故障诊断技术研究[D].华南理工大学,2012:
  • 8王一平..用遗传算法改进HMM的语音识别算法研究[D].太原理工大学,2007:
  • 9Huang J S, Zhang P J. Fault diagnosis for diesel engines based on discrete hidden Markov model [ C ]//International Conference on Intelligent Computation Technology and Auto- mation. 2009 : 512 - 516. 被引量:1
  • 10Soualhi A, Clerc G, Razik H, et al. Fault detection and diag- nosis of induction motors based on hidden Markov model [ C ]//International Conference on Electrical Machines. 2012 : 1693 - 1699. 被引量:1

共引文献1

同被引文献38

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部