期刊文献+

基于最小费用流建模的目标跟踪器研究与仿真

Target tracker based on minimum cost flow modeling
原文传递
导出
摘要 针对目标跟踪中的物体遮挡、光照影响、杂波扰动等问题,设计一种基于最小费用流建模的跟踪器.该跟踪器把整数规划与最小费用流模型相结合,将目标跟踪问题转变为可解的线性规划问题.与其他同类型跟踪器相比,该跟踪器具有更好的跟踪准确性.实验结果表明:运用最小费用流模型的跟踪器可以对复杂环境下的多个目标进行稳定跟踪,提升了跟踪的鲁棒性. A tracker using the method of minimum cost flow was designed to solve the problems of object occlusion, lighting effects and clutter disturbance. This tracker combines integer programming with the minimum cost flow model, and converts the prob- lem of object tracking into a linear programming problem. Compared with other similar trackers, this tracker has a better tracking accu- racy. Simulation results show that the tracker in this paper has strong robustness and better tracking stability in complex environments.
出处 《工程科学学报》 EI CAS CSCD 北大核心 2015年第2期250-254,共5页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(61372090) 国家重点基础研究发展计划资助项目(2012CB821206) 北京市自然科学基金资助项目(4122037)
关键词 目标跟踪 建模 线性规划 机器视觉 target tracking modeling linear programming computer vision
  • 相关文献

参考文献14

  • 1Kim I S,Choi H S,Yi K M,et al.Intelligent visual surveillance:a survey.Int J Control Autom Syst,2010,8(5):926. 被引量:1
  • 2姜明新,王洪玉,刘晓凯.基于多相机的多目标跟踪算法[J].自动化学报,2012,38(4):531-539. 被引量:22
  • 3许海霞,王耀南,袁小芳,周维,朱江.一种分层Mean Shift目标跟踪算法[J].自动化学报,2009,35(4):401-409. 被引量:11
  • 4Zhou H R.A survey of multiple targets tracking technique.Acta Aeronaut Astronaut Sin,1986,7(1):1(周宏仁.多目标跟踪技术综述.航空学报,1986,7(1):1). 被引量:1
  • 5Yu Q,Medioni G.Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association.IEEE Trans Pattern Anal Mach Intell,2009,31(12):2196. 被引量:1
  • 6Serratosa F,Alquezar R,Amezquita N.A probabilistic integrated object recognition and tracking framework.Expert Syst Appl,2012,39(8):7302. 被引量:1
  • 7Maggio E,Taj M,Cavallaro A.Efficient multi-target visual tracking using random finite sets.IEEE Trans Circuits Syst Video Technol,2008,18(8):1016. 被引量:1
  • 8Sharp I,Yu K,Sathyan T.Positional accuracy measurement and error modeling for mobile tracking.IEEE Trans Mobile Comput,2012,11(6),1021. 被引量:1
  • 9Jiang H,Fels S,Little J J.A linear programming approach for multiple object tracking//Proceedings of Conference on Computer Vision and Pattern Recognition.Minneapolis,2007:744. 被引量:1
  • 10Zhang L,Li Y,Nevatia R.Global data association for multi-object tracking using network flows//Proceeding of 26th IEEE Conference on Computer Vision and Pattern Recognition.Anchorage,2008:342. 被引量:1

二级参考文献37

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2Parzen E. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 1962, 33(3): 1065-1076 被引量:1
  • 3Rangarajan A, Chui H, Bookstein F L. The softassign procrustes matching algorithm. In: Proceedings of the 15th International Conference on Information Processing in Medical Imaging. Poultney, USA: IEEE, 1997. 29-42 被引量:1
  • 4Yang C J, Duraiswami R, Davis L S. Efficient Mean-Shift tracking via a new similarity measure. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 176-183 被引量:1
  • 5Yang C J, Duraiswami R, Elgammal A, Davis L S. Realtime Kernel-based Tracking in Joint Feature-spatial Spaces, Technical Report CS-TR-4567, Computer Science Department, University of Maryland, USA, 2004 被引量:1
  • 6Elgammal A, Duraiswami R, Davis L S. Probabilistic tracking in joint feature-spatial spaces. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA: IEEE, 2003. 781-788 被引量:1
  • 7Leung A P, Gong S G. Mean-Shift tracking with random sampling. In: Proceedings of the 17th British Machine Vision Conference. Edinburgh, British: University Trier Press, 2006. 729-738 被引量:1
  • 8Naeem A, Mills S, Pridmore T. Structured combination of particle filter and kernel Mean-Shift tracking. In: Proceedings of the 21st International Conference on Image and Vision Computing. Great Barrier Island, New Zealand: IEEE, 2006. 1-6 被引量:1
  • 9Han B, Joo S W, Davis L S. Probabilistic fusion tracking using mixture kernel-based Bayesian filtering. In: Proceedings of the llth International Conference on Computer Vision. Janeiro, Brazil: IEEE, 2007. 1-8 被引量:1
  • 10Park M, Liu Y X, Collins R T. Efficient mean shift belief propagation for vision tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Alaska, USA: IEEE, 2008. 1-8 被引量:1

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部