期刊文献+

静电纺丝法制备多孔碳纳米纤维及其电化学性能(英文) 被引量:2

Synthesis and Electrochemical Properties of Porous Carbon Nanofibers Derived from Electros*pun Polyvinyl Pyrrolidone/Polymethyl Methacrylate Composites
下载PDF
导出
摘要 以聚乙烯吡咯烷酮(PVP)和聚甲基丙烯酸甲酯(PMMA)为原料,通过静电纺丝法结合三步热处理工艺成功制备出多孔碳纳米纤维.采用X射线衍射、扫描电镜、透射电镜和比表面分析仪等测试方法系统地分析了PVP/PMMA不同质量比对多孔碳纳米纤维的形貌和电化学性能的影响.实验测试结果表明当PVP与PMMA质量比为3∶2时,得到的多孔碳纳米纤维的比表面积最大,可达到545.4m2·g-1,并且具有最好的电化学性能;在0.1C充放电速率下50次循环之后样品的放电比容量约为220mAh·g-1.所有由PVP/PMMA混合原料制备的多孔碳纳米纤维的比容量均高于由PVP原料制备的碳纳米纤维,并具有较好的循环性能. Porous carbon nanofibers (PCNFs) have been synthesized via electrospinning of polyvinyl pyr- rolidone/polymethyl methacrylate (PVP/PMMA) composites precursor into polymeric nanofibers, followed by a three-step heat treatment process. The effects of different mass ratios of PVP to PMMA on the porous carbon nanofibers have been studied systematically by using X-ray diffraction (XRD), scanning electronmicroscopy (SEM), transmission electronmicroscopy (TEM), and Brunauer Emme-Teller (BET) techniques. The results indicate that PCNFs with rn (PVP): m (PMMA)=3 : 2 are mesoporous and exhibit the largest specific surface area of 545.4 m^2·g^-1 without subsequent activation, and the highest capacity about 220 mAh ·g^-1 at 0.1 C after 50 cycles. The electrochemical measurement shows that the cyclic reversible capacity of all the PCNFs is higher than that of carbon nanofibers prepared by PVP, and all the samples have relatively good cycling stability.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2014年第4期49-55,共7页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金面上项目(11472236,11372267)
关键词 静电纺丝 PVP PMMA多孔碳纤维 electrospinning PVP PMMA porous carbon nanofibers
  • 相关文献

参考文献3

二级参考文献34

  • 1Zhai, Y. E; Dou, Y. Q.; Zhao, D. Y.; Fulvio, E F.; Mayes, R. T.; Dai, S. Adv. Mater. 2011, 23, 4828. doi: 10.1002/adma. 201100984. 被引量:1
  • 2苏鹏,郭慧林,彭三,宁生科.物理化学学报,2012,28,2745.doi:10.3866/PKU.WHXB20120822l. 被引量:1
  • 3Wang, G. P.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2012, 41, 797. doi: 10.1039/clcs15060J. 被引量:1
  • 4Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9, 1774. doi: 10.1039/b618139m. 被引量:1
  • 5Hulicova, D.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kodama, M. Chem. Mater. 2005, 17, 1241. doi: 10.1021/cm049337g. 被引量:1
  • 6Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Energy Environ. Sci. 2011, 4, 717. doi: 10.1039/c0ee00277a. 被引量:1
  • 7Konno, H.; Ito, T.; Ushiro, M.; Fushimi, K.; Azumi, K. J. Power Sources 2010- 195, 1739. doi: 10.1016/j.jpowsour.2009.09.072. 被引量:1
  • 8Zhao, L.; Baccile, N.; Gross, S.; Zhang, Y. J.; Wei, W.; Sun, Y. H.; Antonietti, M.; Titirici, M. M. Carbon 2010, 48, 3778. doi: 10.1016/j .carbon.2010.06.040. 被引量:1
  • 9White, R. J.; Antonietti, M.; Titirici, M. M. J. Mater. Chem. 2009, 19, 8645. doi: lO.1039/b911528e. 被引量:1
  • 10Horikawa, T.; Sakao, N.; Sekida, T.; Hayashi, J.; Do, D. D.; Katoh, M. Carbon 2012, 50, 1833. doi: 10.1016/j.-arbon. 2011.12.033. 被引量:1

共引文献10

同被引文献43

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部