期刊文献+

基于判别式扩散映射分析的非线性特征提取 被引量:1

Nonlinear feature extraction based on discriminant diffusion map analysis
下载PDF
导出
摘要 针对高维数据难以被人们直观理解,且难以被机器学习和数据挖据算法有效地处理的问题,提出一种新的非线性降维方法——判别式扩散映射分析(DDMA)。该方法将判别核方案应用到扩散映射框架中,依据样本类别标签在类内窗宽和类间窗宽中判别选取高斯核窗宽,使核函数能够有效提取数据的关联特性,准确描述数据空间的结构特征。通过在人工合成Swiss-roll测试和青霉素发酵过程中的仿真应用,与主成分分析(PCA)、线性判别分析(LDA)、核主成分分析(KPCA)、拉普拉斯特征映射(LE)算法和扩散映射(DM)进行比较,实验结果表明DDMA方法在低维空间中代表高维数据的同时成功保留了数据的原始特性,且通过该方法在低维空间中产生的数据结构特性优于其他方法,在数据降维与特征提取性能上验证了该方案的有效性。 Aiming at that high-dimensional data is hard to be understood intuitively, and cannot be effectively processed by traditional machine learning and data mining techniques, a new method for nonlinear dimensionality reduction called Discriminant Diffusion Maps Analysis (DDMA) was proposed. It was implemented by applying a diseriminant kemel scheme to the framework of the diffusion maps. The Gaussian kernel window width was selected from the within-class width and the between-class width according to discriminating sample category labels, it made kernel function effectively extract data correlation features and exactly describe the structure characteristics of data space. The DDMA was used in artificial Swiss-roll test and penicillin fermentation process, with comparisons with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principle Components Analysis (KPCA), Laplacian Eigenmaps (LE) and Diffusion Maps (DM). The results show that DDMA represents the high-dimensional data in a low-dimensional space while successfully retaining original characteristics of the data; in addition, the data structure features in low-dimensional space generated by DDMA are superior to those generated by the comparison methods, the performance of data dimension reduction and feature extraction verifies effectiveness of the proposed scheme.
出处 《计算机应用》 CSCD 北大核心 2015年第2期470-475,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(60774070 61174119) 国家自然科学基金重点课题资助项目(61034006)
关键词 扩散映射 非线性降维 判别核方案 类别标签 核函数 流形学习 Diffusion Maps (DM) nonlinear diraensionality reduction diseriminant kemel scheme category label kernel function manifold learning
  • 相关文献

参考文献18

  • 1JARDINE A K S, LIN D, BANJEVIC D. A review on machinery di- agnostics and prognostics implementing eondition-based maintenance [ J]. Meehanieal Systems and Signal Processing, 2006, 20 (7) : 1483 - 1510. 被引量:1
  • 2LEE J, NI J, DJURDJANOVIC D. et al. Intelligent prognosties tools and e-maintenance [J]. Computers in Industry, 2006, 57 (6) : 476 -489. 被引量:1
  • 3KORN F, PAGEL B-U, FALOUTSOS C. On the "dimensionality curse" and the "self-similarity blessing" [ J]. IEEE Transactions on Knowledge and Data Engineering, 2001, 13(1) : 96 - 111. 被引量:1
  • 4周东华,,李钢,,李元..数据驱动的工业过程故障诊断技术[M],2011.
  • 5HUANG D, QUAN Y, HE M, et al. Comparison of linear diserimi- nant analysis methods for the classification of cancer based on gene expression data [ J]. Journal of Experimental and Clinical Cancer Research, 2009, 28: 149. 被引量:1
  • 6CUI P, LI J, WANG G. Improved kernel principal component anal- ysis for fault detection [ J]. Expert Systems with Applications, 2008, 34(2) : 1210 - 1219. 被引量:1
  • 7BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality re- duct/on and data representation [ J]. Neural Computation, 2003, 15 (6) : 1373 - 1396. 被引量:1
  • 8COIFMAN R R, LAFON S. Diffusion maps [ J]. Applied and Com- putational Harmonic Analysis, 2006, 21(1): 5-30. 被引量:1
  • 9SINGER A, WU H-T. Vector diffusion maps and the connection Laplacian [ J]. Communications on Pure and Applied Mathematics, 2012, 65(8): 1067-1144. 被引量:1
  • 10尚晓清,宋宜美.一种基于扩散映射的非线性降维算法[J].西安电子科技大学学报,2010,37(1):130-135. 被引量:7

二级参考文献37

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2肖刚,刘三阳,尹小艳.微分流形上的最优化算法[J].西安电子科技大学学报,2007,34(3):472-475. 被引量:7
  • 3Partridge M, Calyo R. Fast Dimensionality Reduction and Simple PCA[J]. Intelligent Data Analysis, 1997, 2(3) : 292- 298. 被引量:1
  • 4Hyvrinen A. Survey on Independent Component Analysis[J]. Neural Computing Surveys, 1999, 2(4): 94-128. 被引量:1
  • 5Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000(290): 2319-2323. 被引量:1
  • 6Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000(290): 2323-2326. 被引量:1
  • 7Belldn M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [J]. Neural Computation, 2003, 15(6): 1373-1396. 被引量:1
  • 8Zhang Zhenyue, Zha Hongyuan. Priciple Manifolds and Nonlinear Dimensionality Reduction Via Local Tangent Space Alignment[J]. SIAM Journal of Scientific Computing, 2005, 26(1):313-338. 被引量:1
  • 9Nadler B, Lafon S, Coifman R R, et al. Diffusion Maps, Spectral Clustering and the Reaction Coordinate of Dynamical Systems [J]. Applied and Computation Harmonic Analysis: Special Issue on Diffusion Maps and Wavelets, 2006, 21(1) : 113-127. 被引量:1
  • 10Coifman R R, Kevrekidis I G, Lafon S, et al. Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stoehastie Systems[J]. Multiseale Model and Simulation, 2008, 7(2) : 842-864. 被引量:1

共引文献19

同被引文献7

引证文献1

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部