期刊文献+

悬浮纳米颗粒对液体燃料着火点的影响 被引量:4

Effect of suspended nano-sized particle on liquid fuel ignition
原文传递
导出
摘要 通过热平板着火实验对含有纳米悬浮颗粒的液体燃料的着火现象进行了研究。对酒精中添加不同体积分数的碳纳米管(CNT,管径40nm)、四氧化三铁以及氧化铝(直径20nm)纳米颗粒的热平板着火特性进行了研究。实验中液体燃料加入纳米颗粒后,在相同热平板温度下的着火概率明显提高,其提高的幅度主要受纳米颗粒的大小、形状以及体积分数的影响,而与纳米颗粒的材质无关。进一步的理论分析表明,着火概率提高的原因是由于液滴在高温平板表面发生剧烈的Leidenfrost相变,纳米颗粒在相变界面堆积从而改变了面附近液体的沸点。 The ignition probabilities of liquid fuel mixed with nano-sized particles were experimentally examined on a heated hot-plate.Increased ignition probabilities of ethanol were found with the addition of Al2O3,Fe3O4 nanoparticle and carbon nanotube suspensions.The magnitudes are mainly affected by the parameters of size,geometry and concentration,but independent of the type of material.Further theoretical analysis indicated that the increased ignition probabilities are due to the levitation of the liquid boiling point caused by the accumulation of nanoparticles near the liquid-vapor interface.
出处 《热科学与技术》 CAS CSCD 北大核心 2015年第1期63-67,共5页 Journal of Thermal Science and Technology
关键词 平板燃烧 碳纳米管 Leidenfrost现象 纳米颗粒 着火概率 hot-plate ignition carbon nanotube CNT Leidenfrost phenomenon nanoparticle ignition probability
  • 相关文献

参考文献18

  • 1PRASHER R. BHATTACHARYA P. PHELAN P E. Thermal conductivity of nanoscale colloidal solutions (nanofluids)[J]. Physical Review Letters. 2005.94(025901):1-4. 被引量:1
  • 2CHOl SUS; ZHANG Z G. YU W. et al. Anomalous thermal conductivity enhancement in nano-tube suspensions[J]. Applied Physics Letters. 2001. 79: 2252-2254. 被引量:1
  • 3XIE H. LEE H. YOUN W. etal. Nanofluids containing multi walled carbon nanotubes and their enhanced thermal conductivities[J]. Journal of Applied Physics. 2003. 94(8) :4967-4971. 被引量:1
  • 4WEN D. DING Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids )[J]. Journal of ThermoPhysics and Heat Transfer 2004, 18(4) :481-485. 被引量:1
  • 5TYAGI H. PHELAN P. PRASHER R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector[J]. Journal of Solar Energy Engineering. 2009. 131 C 4) : 041004- 041007. 被引量:1
  • 6MEHRABAN R P. AGHANAJAFI C. The Effect of Thermal Radiation on Nanofluid Cooled Microchannels[J]. Journal of Fusion Energy. 2009. 28 (1) :91-100. 被引量:1
  • 7KRISHNAMURTHY S. BHATTACHARYA P. PHELAN P E. et al. Enhanced mass transport in nanofluids[J]. Nano Letters. 2006. 6 :419-423. 被引量:1
  • 8OZTURK S. HASSAN Y A. UGAZ V M. Interfacial complexation explains anomalous diffusion in nanofluids[J]. Nano Letters. 2010. 10:665-671. 被引量:1
  • 9LI J M, LI Z L, WANG B X. Experimental viscosity measurements for copper oxide nanoparticle suspensions DJ. Tsinghua Science and Technology, 2002, 7(2) ,198-20l. 被引量:1
  • 10DING v . ALIAS H, WEN D, et al. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids )[J]. International Journal of Heat and Mass Transfer, 2005, 49(1/ 2) ,240-250. 被引量:1

同被引文献30

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部