期刊文献+

ARMA预测技术在重庆东水门长江大桥中的应用研究 被引量:3

Research on Application of ARMA Predicting Technique in Chongqing Dongshuimen Yangtze River Bridge
下载PDF
导出
摘要 针对重庆东水门长江大桥桥塔上部应变长期监测数据,采用ARMA技术对其进行建模处理并预测其未来发展趋势。试验结果显示,采用ARMA方法对应变量向后外推5步的预测误差小于6%。预测结果在工程应用中具有一定的参考价值,为桥梁结构的安全预警提供了可靠的科学依据。 Aiming at long-term monitoring data on upper strain of tower of Chongqing Dongshuimen Yangtze River Bridge, this paper establishes its model and predicts its development tendency in the future by means of ARMA technique. Test results show that the error of prediction by pushing strain 5 steps backward by means of ARMA method is less than 6%. The prediction results exhibit certain reference values in project application and provide reliable scientific bases for safety alert of bridge structures.
出处 《公路交通技术》 2014年第6期95-96,102,共3页 Technology of Highway and Transport
基金 重庆市应用开发(重大)项目(cstc2013yykf C30001) 交通运输部西部交通建设科技项目(2013-364-740-600) 重庆市科技人才培养计划资助项目(cstc2013kjrc-qnrc30001)
关键词 东水门大桥 ARMA 预测 桥梁监测 Dongshuimen Bridge ARMA prediction bridge monitoring
  • 相关文献

参考文献8

二级参考文献32

  • 1谭永朝,郑翰献,俞菊虎,杨骊先,孙炳楠.钱江四桥桥梁实时健康监测系统开发研究[J].公路交通科技,2004,21(11):43-46. 被引量:14
  • 2HONG Wei-Chiang. Electric load forecasting by support vector model [J]. Applied Mathematical Modelling, 2009, 33(5): 2444- 2454. 被引量:1
  • 3WITTEN I H, FRANK E. Data Mining: Practical machine learning tools and techniques [M]. San Francisco: Morgan Kaufmann, 2006. 被引量:1
  • 4GOIA A, MAY C, FUSAI G. Functional clustering and linear regression for peak load forecasting [J]. International Journal of Forecasting, 2010, 26(4): 700 711. 被引量:1
  • 5PAPPAS S S, EKONOMOU L, KRAMOUSANTAS D C, CHATZARAKIS G E, KATSIKAS S K, LIATSIS P. Electricity demand loads modeling using auto regressive moving average (ARMA) models[J]. Energy, 2008, 33(9): 1353-1360. 被引量:1
  • 6NOWlCKA-ZAGRAJEK J, WERON R. Modeling electricity loads in California: ARMA models with hyperbolic noise [J]. Signal Processing, 2002, 82(12): 1993-1915. 被引量:1
  • 7WANG Bo, TAI Neng-ling, ZHAI Hai-qing, YE Jian, ZHU Jia-dong, QI Liang-bo. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting [J]. Electric Power Systems Research, 2009, 78(10): 1679-1685. 被引量:1
  • 8KALAITZAKIS K, STAVRAKAKIS G S, ANAGNOSTAKIS E M. Short-term load forecasting based on artificial neural networks parallel implementation [J]. Electric Power Systems Research, 2002, 63(3): 185-196. 被引量:1
  • 9HSU Che-Chiang, CHEN Chia-Yon. Regional load forecasting in Taiwan -- Applications of artificial neural networks [J]. Energy Conversion and Management, 2003, 44( 12): 1941-1949. 被引量:1
  • 10PAl Ping-feng, HONG Wei-Chiang. Support vector machines with simulated annealing algorithms in electricity load forecasting [J]. Energy Conversion and Management, 2005, 46(17): 2669-2688. 被引量:1

共引文献84

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部