期刊文献+

油-水-气三相旋流器分离验证及气-液腔结构优化 被引量:9

Verification of separation performance of oil-water-gas cyclone and optimization of structure of liquid-gas separation chamber
下载PDF
导出
摘要 采用Fluent软件数值模拟了新型油-水-气三相旋流器的分离性能,并以分离效率为目标函数对气-液分离腔主要尺寸进行了优化设计。结果表明,该型油-水-气三相旋流器在油滴与气泡直径为50μm时具有最优的分离效率,且其气泡迁移效率较油滴迁移效率高.当气泡直径为50μm时,气-液分离效率达到99%以上;当气泡直径小于40μm时,气-液分离效率随直径的减小显著下降;当气泡直径小于10μm时,气-液分离效率趋近于零.经对比分析建立了溢流口直径与分流比的线性关系式,且得到优选后气-液分离腔最优主要结构尺寸:分离腔长度203mm,分离腔直径60mm,溢流口插入长度20mm. The Fluent was adopted to simulate the separation performance of the new oil-water-gas cy-clone ,and the separation efficiency was regarded as a objective function to optimally design the main si-zes of the gas-liquid separation chamber .The results show that the separation performance of the oil-gas-water cyclone is best when the diameters of oil droplets and bubbles are 50um ,and the migration efficiency of bubbles is better than that of oil droplets .The gas-liquid separation efficiency is over 99%when the bubble size is 50um ;the gas-liquid separation efficiency decreases obviously with the bubble diameters reducing w hen the bubble size is less than 40um ;the gas-liquid separation efficiency approa-ches to zero when the bubble size is less than 10um .Through the comparative analysis ,the linear rela-tion betw een the diameter of overflow and the split ratio w as established ,and the optimum sizes of the main structure of the gas-liquid separation chamber are 203mm of length ,60mm of diameter and 20mm of insert length .
出处 《武汉工程大学学报》 CAS 2014年第10期37-41,共5页 Journal of Wuhan Institute of Technology
基金 湖北省自然科学基金项目(2012FFB04707) 武汉工程大学研究生教育创新基金项目(CX2013080) 武汉工程大学科学研究基金项目(K201414)
关键词 油水气分离 数值模拟 优化设计 oil-water-gas separation numerical simulation optimization design
  • 相关文献

参考文献8

二级参考文献37

  • 1龚安龙,王连泽.旋风分离器减阻杆减阻的PIV实验研究[J].工程力学,2006,23(1):160-164. 被引量:7
  • 2林玮,王乃宁.用应力模型计算旋风分离器的流场[J].华东工业大学学报,1996,18(3):7-12. 被引量:11
  • 3陈明功,付永强,袁细宁.湿法喷雾脱硫塔内雾化器的应用[J].环境工程,2006,24(4):40-41. 被引量:3
  • 4化工设备设计全书编辑委员会.塔设备设计[M].上海:上海科学技术出版社,1988.. 被引量:3
  • 5[1]Kouba G E,Shoham O,Shirazi S.Design and Performance of Gas-Liquid Cyclone Separators.Proceedings,BHR Group 7th International Meeting on Multiphase Flow,Cannes,France,June 7-9,1995:307~327 被引量:1
  • 6[2]Chang F,Dhir V K.Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes.International Journal of Heat and Fluid Flow,1994;15:346~356 被引量:1
  • 7[3]Kotoh O.Experimental Study of Turbulent Swirling Flow in a Straight Pipe.Journal of Fluid Mechanics,1991;225:445~479 被引量:1
  • 8[4]Magnaudet J J.The Forces Acting on Bubbles and Rigid Particles.FEDSM,ASME,Vancouver,Canada,June 22,1997 被引量:1
  • 9[5]Taitel Y,Dukler A E.A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow.AIChE Journal,1976;22(1):47~54 被引量:1
  • 10[6]Taitel Y,Barnea D,Dukler A E.Modeling Flow Pattern Transition for Steady Upward Gas-Liquid Flow in Vertical Tubes.AIChE Journal,1980;46:345~354 被引量:1

共引文献191

同被引文献66

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部