期刊文献+

基于自适应参数回归的非局部图像滤波算法 被引量:1

Non-local image filter algorithm based on adaptive parameter regression
下载PDF
导出
摘要 针对图像加性高斯白噪声,提出一种优化的自适应参数滤波算法。该算法以非局部欧氏中值(nonlocal Euclidean medians,NLEM)滤波算法为基础,根据含噪图像梯度幅值在一定噪声范围内服从Rayleigh分布这一特性,求得以梯度幅值和噪声标准差为自变量的二元自适应滤波参数,并将它引入到邻域的权值计算中。其次,噪声的变化影响着p范数回归的选择,在一定范围内以噪声标准差为自变量对参数p进行多项式拟合,得到自适应p范数回归。在自适应滤波参数基础上,用自适应p范数回归进一步改进NLEM滤波算法的1-范数回归。所选图像的实验结果表明,本文算法在一定噪声范围内不但获得满意的去噪效果,而且有效地减少人机交互程度。 For additive white Gaussian noise of an image, this paper proposes an optimized adaptive parame- ter filter algorithm. Based on the non-local Euclidean medians (NLEM) algorithm, according to the property that the noise image gradient amplitude obeys Rayleigh distribution within a certain noise range, we obtain a bi- nary adaptive filter parameter by regarding gradient amplitude and noise standard deviation as independent varia- bles. The adaptive filter parameter is introduced in the weight calculation of neighbors. Furthermore, the chan- ges of the noise affect the selections of the gp norm regression. Make p used polynomial fit with noise standard deviation in a certain range, and get adaptive gp norm regression. On the basis of adaptive filter parameters, g2 norm regression used in NLEM can be improved by using adaptive gp norm regression. It is verified that the new algorithm not only obtains satisfactory results of denoising in a certain noise range, but also reduces the degree of human-computer interaction effectively.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第2期449-454,共6页 Systems Engineering and Electronics
基金 高等学校博士学科点专项科研基金(20136102110037)资助课题
关键词 非局部欧氏中值 RAYLEIGH分布 回归模型 自适应参数 曲线拟合 non-local Euclidean medians Rayleigh distribution regression model adaptive parameter curve fitting
  • 相关文献

参考文献2

二级参考文献23

  • 1Xu R,Chen Y W.Wavelet-based multiresolution medical image regis-tration strategy combining mutual information with spatial information[J].International Journal of Innovative Computing,Information and Control,2007,3(2):285-296. 被引量:1
  • 2Manjon J V,Carbonell C J,Lull J J,et al.MRI denoising using non-lo-cal means[J].Medical Image Analysis,2008(12):514-523. 被引量:1
  • 3Buades A,Coll B,Morel J M.A non-local algorithm for image denoising[C]//IEEE CVPR,San Diego,California,IEEE Press,2005:60-65. 被引量:1
  • 4Kervrann C,Boulanger J.Optimal spatial adaptation for patch-based image denoising[J].IEEE Transactions on Image Processing,2006,15(10):2866-2878. 被引量:1
  • 5CoupéP,Yger P,Prima S,et al.An optimized blockwise nonlocal means denoising filter for3-D magnetic resonance images[J].IEEE Transactions on Medical Imaging,2008,27(4):425-441. 被引量:1
  • 6Avanaki A N,Diyanat A,Sodagari S.Optimum parameter estimation for non-local means image de-noising using corner information[C]//The 9 th International Conference on Signal Processing,Beijing,China,IEEE Press,2008:861-863. 被引量:1
  • 7Zimmer S,Didas S,Weickert J.A rotationally invariant block matching strategy improving image denoising with non-local means[C]//Interna-tional Workshop on Local and Non-Local Approximation in Image Pro-cessing,Lausanne,Switzerland,2008. 被引量:1
  • 8Smith S M,Brady J M.SUSAN-A new approach to low level image pro-cessing[J].International Journal of Computer Vision,1997,23(1):45-78. 被引量:1
  • 9Zhang Y K,Zhang Y J,Lu H B.Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering[J].IEEE Transac-tions on Nuclear Science,2010,57(5):2587-2598. 被引量:1
  • 10Canny J F. A computational approach to edge detection[ J]. IEEE Transacions on Pattern Analysis and Machine Intelligence, 1986,8(6): 679 ~698. 被引量:1

共引文献19

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部