期刊文献+

钾-氯离子协同转运体2参与痛觉敏化形成的研究进展 被引量:1

Research progress in potassium-chlorine cotransporter 2 contributing to the development of pain sensitization
原文传递
导出
摘要 背景痛觉敏化的机制尚未清楚,以往研究集中在神经系统兴奋性增强,近年来抑制性功能下调在痛觉敏化中的作用引起关注。中枢神经系统抑制性受体^y氧基丁酸A(γ-aminobutyricacidA,GABA。)受体的标志性蛋白之一钾-氯离子协同转运体2(K+-Cl-cotransporter2,KCC2)在神经元从抑制到兴奋的转变中起了重要作用。KCC2通过影响Cl-的浓度来影响吖一氨基丁酸/甘氨酸所介导的抑制作用,进而影响神经系统兴奋性。目的就KCC2在痛觉敏化发生过程中的作用及相关通路进行综述。内容多种细胞外信号可以激活小胶质细胞并且引起P2X4Rs的上调;P2X4Rs的激活触发脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)从小胶质细胞的释放;BDNF到神经元的酪氨酸蛋白激酶B受体(tyrosine kinase Breceptor,TrkB)信号通路改变KCC2的功能,导致神经元Cl-外排能力的降低,从而抑制1弓瓦基丁酸/甘氨酸所介导的抑制作用。趋向研究KCC2参与痛觉敏化形成的机制,为痛觉过敏化的治疗提供新的靶点。 Background The underlying mechanism of hyperalgia is still remained unclear. Many previous researches focused on the up-regulation of excitable neurotransmitters. Recently it has been noticed that the expression of potassium-chloride co- transporter2 (KCC2), a functional protein of ^-aminobutyric acid A (GABAA) receptors, was altered during the development of hyperalgesia, which caused the neurons from inhibition to excitation.The KCC2 establishes the low intraneuronal C1- levels required for the hyperpolarizing inhibitory postsynaptic potentials mediated by ionotropic GABA~ receptors and glycine (Gly) receptors. Objective The role of KCC2 in pain sensitization and it's pathways is reviewed. Content Various extracellular signals may activate microglia and upregulate P2X4Rs. P2X4R activation triggers the release of brain-derived neurotrophic factor (BDNF) from microglia. BDNF-tyrosine kinase B receptor (TrkB) signaling alters KCC2 function leading to a reduced C1- extrusion capacity which dampens GABAA receptor/Gly receptor mediated inhibition. Trend Understanding the molecular mechanism of KCC2 in hyperalgesia can provide novel targets for therapeutic approaches.
出处 《国际麻醉学与复苏杂志》 CAS 2015年第2期170-173,181,共5页 International Journal of Anesthesiology and Resuscitation
基金 国家自然科学基金(81471134)
关键词 钾-氯离子协同转运体2 痛觉敏化 脑源性神经营养因子 小胶质细胞 Potassium-chlorine cotransporter 2 Hyperalgesia Brain derived neurotrophic factor Microglia
  • 相关文献

参考文献32

  • 1Rivera C, Voipio J, Payne JA, et aI. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation[J]. Nature, 1999,397(6716): 251-255. 被引量:1
  • 2Payne JA, Stevenson TJ, Donaldson LF. Molecular characterization of a putative K -CI cotransporter in rat brain. A neuronal-specific isoform[J]. J Bioi Chem, 1996, 27 I( 27 ): 16245 -16252. 被引量:1
  • 3Payne JA, Rivera C, Voipio J, et aI. Cation-chloride co-transporters in neuronal communication, development and trauma[J]. Trends Neurosci, 2003, 26(4): 199-206. 被引量:1
  • 4Fiumelli H, Woodin MA. Role of activity-dependent regulation of neuronal chloride homeostasis in development.[J]. Curr Opin Neurobiol, 2007, 17( 0: 81-86. 被引量:1
  • 5Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic painj J]. Nature, 2005, 438(7070): 1017-1021. 被引量:1
  • 6Ferrini F, Trang T, Mattioli TA, etal. Morphine hyperalgesia gated' through microglia -mediated disruption of neuronal CIhomeostasis[J], Nat Neurosci , 2013, 16(2): 183-192. 被引量:1
  • 7Rivera C, Li H, Thomas -Crusells J, et al. BDNF -induced TrkB activation down -regulates the K + -CI - cotransporter KCC2 and impairs neuronal CI- extrusion[J]. J Cell Bioi, 2002, 159 ( 5 ) : 747-752. 被引量:1
  • 8Rivera C, Voipio J, Thomas -Crusells J, et al. Mechanism of activity -dependent downregulation of the neuron -specific K-CI cotransporter KCC2[J]. J Neurosci, 2004, 24( 19): 46834691. 被引量:1
  • 9Zhang W, Liu L Y, Xu TL Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rats[J]. Neuroscience, 2008, 152(2): 502-510. 被引量:1
  • 10Trang T, Beggs S, Salter MW. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain[J]. Neuron Glia Bioi, 2011, 7(1): 99-108. 被引量:1

二级参考文献38

  • 1Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol, 2004, 74(6): 363-396. 被引量:1
  • 2Taly A, Corringer PJ, Guedin D, et al. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov, 2009, 8(9): 733-750. 被引量:1
  • 3Nashmi R, Lester HA. CNS localization of neuronal nicotinic receptors. J Mol Neurosci, 2006, 30(1-2) : 181-184. 被引量:1
  • 4Cucchiaro G, Chaijale N, Commons KG. The dorsal raphe nucleus as a site of action of the antinociceptive and behavioral effects of the alpha4 nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther, 2005, 313(1): 389-394. 被引量:1
  • 5Lips KS, Pfeil U, Kummer W. Coexpression of [alpha]9 and [alpha]10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience, 2002, 115(1): 1-5. 被引量:1
  • 6Shi Y, Weingarten TN, Mantilla CB, et al. Smoking and pain: pathophysiology and clinical implications. Anesthesiology, 2010, 113(4): 977-992. 被引量:1
  • 7Vincler M, Mclntosh JM. Targeting the alpha9alphal0 nicotinic acetylcholine receptor to treat severe pain. Expert Opin Ther Targets, 2007, 11(7): 891-897. 被引量:1
  • 8Marrero MB, Benchefif M. Convergence of alpha 7 nicotinic acetylcholine receptor-activated pathways for anti -apoptosis and anti-inflammation: central role for JAK2 activation of STAT3 and NF-kappaB. Brain Res, 2009, 23(1256) : 1-7. 被引量:1
  • 9Wang H, Yu M, Ochani M, et al. c:7 subunit is an essential regulator 421(6921 ) : 384-388. Nicotinic acetylcholine receptor of inflammation. Nature, 2003,. 被引量:1
  • 10Buccafusco JJ, Letchworth SR, Bencherif M, et al. Long lasting cognitive improvement with nicotinic receptor agonists : mechanisms of pharmacokinetic pharmacodynamic discordance. Trends Pharmaeol Sci, 2005, 26(7): 352-360. 被引量:1

共引文献13

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部