摘要
基于二维声波方程,使用四阶截断的泰勒展开式离散时间偏导数,利用八阶精度的近似解析离散算子离散空间高阶偏导数,发展了一种八阶ONAD方法.通过数值误差、计算效率和复杂介质波场模拟等考察研究,结果均显示该方法在压制数值频散、计算效率和波场模拟精度等方面明显优越于四阶LAX-Wendroff Corrected(LWC)方法和八阶LWC方法.因此,八阶ONAD方法是一种有望在地震波模拟得到应用的十分有效的数值模拟方法.
The eighth-order ONAD method is developed for solving the 2-D acoustic wave equation.The new method uses the fourth-order truncated Taylor expansion to discretize partial derivative of time,and employs the eighth-order nearly analytic discrete operator discretize high-order partial derivatives of space.Through studying the numerical error,computational efficiency and complex medium wave-field simulations,those results show that this method is obviously superior to the fourth-order LAX-Wendroff Corrected(LWC)method and the eighth-order LWC method in suppressing the numerical dispersion,computational efficiency and simulation precision of wave-fields.Therefore,the eighth-order ONAD method is a very effective method of numerical simulation and can be applied in the seismic wave simulation.
出处
《地球物理学进展》
CSCD
北大核心
2014年第6期2592-2599,共8页
Progress in Geophysics
基金
国家自然科学基金项目(41230210
41464004)
Statoil company资助项目(4502502663)
云南省教育厅科学研究基金重点项目(2013Z152)联合资助
关键词
NAD算子
数值频散
高精度
地震波模拟
NAD operator
numerical dispersion
high accuracy
seismic field modeling