期刊文献+

Sentiment Analysis for Chinese Text Based on Emotion Degree Lexicon and Cognitive Theories 被引量:2

Sentiment Analysis for Chinese Text Based on Emotion Degree Lexicon and Cognitive Theories
原文传递
导出
摘要 The mass data of social media and social networks generated by users play an important role in tracking users’sentiments and opinions online.A good polarity lexicon which can effectively improve the classification results of sentiment analysis is indispensable to analyze the user’s sentiments.Inspired by social cognitive theories,we combine basic emotion value lexicon and social evidence lexicon to improve traditional polarity lexicon.The proposed method obtains significant improvement in Chinese text sentiment analysis by using the proposed lexicon and new syntactic analysis method. The mass data of social media and social networks generated by users play an important role in tracking users' sentiments and opinions online. A good polarity lexicon which can effectively improve the classification results of sentiment analysis is indispensable to analyze the user's sentiments. Inspired by social cognitive theories, we combine basic emotion value lexicon and social evidence lexicon to improve traditional polarity lexicon. The proposed method obtains significant improvement in Chinese text sentiment analysis by using the proposed lexicon and new syntactic analysis method.
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期1-6,共6页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(No.61303094) the Doctoral Fund ofMinistry of Education of China(No.20123108120027) the Program of Science and Technology Commission of Shanghai Municipality(No.14511107100) the Shanghai Leading Academic Discipline Project(No.J50103) the Innovation Program of Shanghai Municipal Education Commission(No.14YZ024)
关键词 Chinese text sentiment analysis emotion lexicon social cognitive theory emotion tendency Chinese text, sentiment analysis, emotion lexicon, social cognitive theory, emotion tendency
  • 相关文献

参考文献22

  • 1EIRINAKI M, PISAL S, SINGH J. Feature-based opinion mining and ranking[J]. Journal of Computer and System Sciences, 2012, 78(4): 1175-1184. 被引量:1
  • 2ZHAI Z W, Lru B, Xu H, et a1. Clustering product features for opinion mining[C]/ / Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2011: 347- 354. 被引量:1
  • 3Lru B. Sentiment analysis and opinion mining: Synthesis lectures on human language technologies[M].[so 1.J: Morgan & Claypool Publishers, 2012: 1-167. 被引量:1
  • 4MAAS A L, DALY R E, PHAM P T, et a1. Learning word vectors for sentiment analysis[C]/ / Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies.[so 1.J: Association for Computational Linguistics, 2011: 142-150. 被引量:1
  • 5Lru B. Sentiment analysis and subjectivity[C]/ / Handbook of Natural Language Processing. New York: CRC Press, 2010: 627-666. 被引量:1
  • 6Lru B, ZHANG L. A survey of opinion mining and sentiment analysis[C]/ / Mining Text Data. Berlin, Germany: Springer-Verlag, 2012: 415-463. 被引量:1
  • 7KOULOUMPIS E, WILSON T, MOORE J. Twitter sentiment analysis: The good the bad and the omgl [c]//Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Barcelona, Spain: AAAI, 2011: 538-54l. 被引量:1
  • 8PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining[c]// Seventh International Conference on Language Resources and Evaluation. Valletta, Malta: LREC, 2010: 1320-1326. 被引量:1
  • 9CAMBRIA E, HUSSAIN A, DURRANI T, et al. Towards a Chinese common and common sense knowledge base for sentiment analysis[c]// Advanced Research in Applied Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2012: 437-446. 被引量:1
  • 10MIAO Y Q, Su J, Lru S B, et al. SOCAL based method for Chinese sentiment analysis[c]// Informatics and Management Science IV. Berlin, Germany: Springer-Verlag, 2013: 345-35l. 被引量:1

同被引文献5

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部