期刊文献+

高超声速复杂气动问题数值方法研究进展 被引量:17

Progress in numerical simulation techniques of hypersonic aerodynamic problems
原文传递
导出
摘要 高超声速流场具有复杂流动特征,其中真实气体效应、磁流体干扰效应和力热结构耦合效应等对气动力分析产生了重要影响。将流体力学研究扩展到分子动力学、电磁流体力学以及流固耦合等交叉学科领域,这给数值模拟方法带来了巨大挑战。针对高超声速气动力/热分析的热点问题,重点关注高温效应与低密度流动效应、磁流体干扰效应和力热结构耦合效应等,结合算例分析了相应的数值求解技术;在气动热方面主要比较了3类求解方法(纯工程方法、纯数值方法和基于Prandtl边界层理论的方法),并给出了相应算例;对于气动力/热/结构耦合问题,从耦合模型及耦合计算方法两方面开展了分析。最后指出了高超声速复杂气动问题数值求解技术未来需重点关注的几个方面。 Hypersonic flow field has complex flow characteristics in which real gas effects, magnetic fluid interference effects and fluid/thermal/structural coupling effects have an important impact on the aerodynamic force. They extend fluid dynamics to molecular dynamics, electromagnetic fluid dynamics, fluid/structure interaction and other interdisciplinary fields, which have brought great challenges to the numerical simulation methods. Aimed at hot issues of hypersonic aerodynamic force and aerodynamic heat, high-temperature effects, low-density flow effect, magnetic fluid interference effect and fluid/ thermal/structural coupling effect have been significantly emphasized. Several examples and the corresponding numerical solution techniques are given in this paper. Three methods of aerodynamic heating are compared, i.e. , pure engineering method, pure numerical method and Prandtl boundary layer theory-based method. For fluid/thermal/structural coupling problem, analyses are carried out in two aspects, i. e. , coupling model and coupling calculation method. Finally, several problems of numerical simulation technologies which need to be emphasized in the future are figured out.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第1期159-175,共17页 Acta Aeronautica et Astronautica Sinica
基金 国家"863"计划~~
关键词 高超声速 数值模拟 气动加热 磁流体力学 气动热弹性力学 气动力/热/结构耦合 hypersonic numerical simulation aerodynamic heating magnetohydrodynamics aerothermoelasticity fluid/ thermal/structural coupling
  • 相关文献

参考文献74

  • 1Anderson J D.Hypersonic and high temperature gas dynamics[M].Reston:AIAA,2000:13-23. 被引量:1
  • 2卞荫贵,徐立功编著..气动热力学[M].合肥:中国科学技术大学出版社,1997:398.
  • 3Jameson A,Schmidt W,Turkel E.Numerical solutions of the Euler equations by finite volume methods using RungeKutta time-stepping schemes,AIAA-1981-1259[R].Reston:AIAA,1981. 被引量:1
  • 4Mavriplis D J,Jameson A.Multigrid solution of the Navier-Stokes equations on triangular meshes[J].AIAA Journal,1990,28(8):1415-1425. 被引量:1
  • 5Briley W R,McDonald H.Solution of the multidimensional compressible Navier-Stokes equations by a generalized implicit method[J].Journal of Computational Physics,1977,24(4):372-397. 被引量:1
  • 6Jameson A,Turkel E.Implicit schemes and LU-decompositions[J].Mathematics of Computation,1981,37(156):385-397. 被引量:1
  • 7Yoon S,Jameson A.Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J].AIAA Journal,1988,26(9):1025-1026. 被引量:1
  • 8Saad Y,Schultz M H.GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J].SIAM Journal on Scientific and Statistical Computing,1986,7(3):856-869. 被引量:1
  • 9van Leer B.Flux-vector splitting for the Euler equations[J].Lecture Notes on Physics,1982,170:507-512. 被引量:1
  • 10Roe P L.Approximate Riemann solvers,parameter vectors,and difference schemes[J].Journal of Computational Physics,1981,43(2):357-372. 被引量:1

二级参考文献271

共引文献342

同被引文献105

引证文献17

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部