期刊文献+

基于神经网络模型的动力电池SOC估计研究 被引量:41

Estimation of state-of-charge for electric vehicle power battery with neural network method
下载PDF
导出
摘要 针对电动汽车动力电池荷电状态(SOC)的估计问题,对动力电池的荷电状态估计方法进行了研究。对电池荷电状态的影响因素进行了归纳,提出了基于反向传播神经网络(BP神经网络)的动力电池荷电状态估计方法。利用汽车仿真软件ADVISOR对电动汽车行驶典型的汽车测试工况进行了模拟,得到了电动汽车动力电池荷电状态与电池的充放电电流、温度之间的关系。对得到的训练样本数据进行了归一化处理,经过训练,得到基于BP神经网络的动力电池荷电状态估计模型。同样,利用ADVISOR软件得到的测试数据,对得到的神经网络模型进行了测试。研究结果表明,该模型的估计值和输出值之间的误差最大值为4%左右,模型的精度符合动力电池荷电状态估计的使用要求。 Aiming at estimating state-of-charge of electric vehicle batteries precisely,study on modeling state-of-charge( SOC) was investigated. After analyzing effect factors of SOC,a model of SOC on BP neural network was established. Electric vehicle simulation software ADVISOR was used to simulate an electric vehicle on typical driving cycles. The relationship between current,temperature and SOC was derived through simulation. After normalization of the training data and training the neural network,a SOC estimation model based on BP neural network was derived. The model was tested by testing data obtained by ADVISOR. The results indicate that the maximum error between the model estimation and actual values is 4%,which can satisfy the requirements of actual use of SOC.
出处 《机电工程》 CAS 2015年第1期128-132,共5页 Journal of Mechanical & Electrical Engineering
关键词 电动汽车 电池荷电状态 神经网络 electric vehicle state-of-charge(SOC) neural network
  • 相关文献

参考文献16

  • 1雷肖,陈清泉,刘开培,马历.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-160. 被引量:34
  • 2PILLER S,PERRIN M,JOSSEN A.Methods for state-of-charge determination and their applications[J].Journal of Power Sources,2001,96(1):113-120. 被引量:1
  • 3CHO S,JEONG H,HAN C,et al.State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model[J].Computers & Chemical Engineering,2012,41 (6):1-9. 被引量:1
  • 4徐欣歌,杨松,李艳芳,陈文芗.一种基于预测开路电压的SOC估算方法[J].电子设计工程,2011,19(14):127-129. 被引量:33
  • 5PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs[J].Journal of Power Sources,2004,134(2):277-292. 被引量:1
  • 6SHEN W X,CHAN C C,LO E W C,et al.Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles[J].IEEE Transactions on Industrial Electronics,2002,49 (3):677-684. 被引量:1
  • 7张良均,曹晶..神经网络实用教程[M].北京:机械工业出版社,2008:184.
  • 8RUMELLHART DE,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323 (6088):533-536. 被引量:1
  • 9周开利,康耀红编著..神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:255.
  • 10左燕霞,徐振辞,聂建中,马香玲.基于BP神经网络模型的用水量预测研究[J].灌溉排水学报,2007,26(S1):97-98. 被引量:4

二级参考文献45

共引文献82

同被引文献322

引证文献41

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部