摘要
为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%。
To improve accuracy of wind power prediction,this paper proposes a short-term wind power prediction method combining a particle filter (PF)and a radial basis function (RBF) neural network.Historical wind speed data are first processed with a particle filter.The processed wind speed data combined with the historical data of wind direction and temperature are used as in-put to the model.A PF-RBF neural network of wind power output prediction model is established using the new input data.Simulation results show that the proposed model is accurate in wind power prediction.The mean absolute percentage prediction error in a period of 120 hours has been reduced to 8.04%,and the root mean square error is 10.67%.
出处
《上海电机学院学报》
2014年第6期324-328,333,共6页
Journal of Shanghai Dianji University
基金
上海市自然科学基金项目资助(11ZR1413900)
上海市教育委员会科研创新项目资助(13YZ140)
上海市教育委员会重点学科资助(J51901)
关键词
粒子滤波
径向基函数
神经网络
功率预测
风力发电
particle filter(PF)
radial basis function (RBF)
neural network
power predic-tion
wind power generation