期刊文献+

基于CKF的分布式滤波算法及其在目标跟踪中的应用 被引量:9

Distributed algorithm-based CKF and its applications to target tracking
原文传递
导出
摘要 针对已有基于Sigma点信息滤波的分布式滤波算法,其性能易受参数影响而导致应用范围受限的问题,以容积卡尔曼滤波(CKF)为基础,利用信息滤波和平均一致性理论提出一种分布式CKF算法.该算法在保持分布式滤波优良特性(即可扩展性和对节点故障强鲁棒性)的同时,兼具CKF的高滤波精度和强稳定性.仿真结果表明了所提出算法的有效性,与分布式Unscented卡尔曼滤波(UKF)算法相比,该算法显著提高了目标跟踪的精度和稳定性. For the problem that the performance of distributed filter based on Sigma point information filtering is affected by the parameters, which limits its scope of application, a distributed CKF based on cubature Kalman filter(CKF) is derived by using the information filter framework and the average-consensus theory. This algorithm not only keeps advantages of the distributed filtering, such as the scalability and the robustness to sensor failures, but also has the high accuracy and strong stability of CKF. The simulation result shows the effectiveness of the proposed algorithm. Compared with the distributed UKF algorithm, it improves the accuracy and stability of the target tracking issue.
出处 《控制与决策》 EI CSCD 北大核心 2015年第2期296-302,共7页 Control and Decision
基金 国家自然科学基金项目(51177137) 国家自然科学基金重点项目(61134001)
关键词 分布式估计 容积卡尔曼滤波 平均一致性 目标跟踪 distributed estimation cubature Kalman filter average-consensus target tracking
  • 相关文献

参考文献18

  • 1Carli R, Chiuso A, Schenato L, et al. Distributed Kalman filtering based on consensus strategies[J]. IEEE J Selected Areas Communication, 2008, 26(4): 622-633. 被引量:1
  • 2Ren W, Beard R W, Atldns E M. Information consensus in multivehicle cooperative control[J]. IEEE Control System Magazine, 2007, 27(2): 71-82. 被引量:1
  • 3Olfati-Saber R. Distributed Kalman filter with embedded consensus filters[C]. Proc of the 44th IEEE Conf on Decision and Control and the European Control. Seville: IEEE, 2005: 8179-8184. 被引量:1
  • 4Olfati-Saber R, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion[C]. Proc of the 44th IEEE Conf on Decision and Control and the European Control. Seville: IEEE, 2005: 6698-6703. 被引量:1
  • 5Olfati-Saber R. Distributed Kalman filtering for sensor networks[C]. Proc of the 46th IEEE Conf on Decision and Control. New Orleans: IEEE, 2007: 5492-5498. 被引量:1
  • 6Anderson B D O, Moore J B. Optimal filtering[M]. Englewood Cliffs: Prentice-Hall, 1979: 138-142. 被引量:1
  • 7Li W L, Jia Y M. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise[J]. Signal Processing, 2012, 92(10): 2464-2470. 被引量:1
  • 8Li W L, Jia Y M. Consensus-based distributed multiple model ukf for jump markov nonlinear systems[J]. IEEE Trans on Automatic Control, 2012, 57(1): 230-236. 被引量:1
  • 9Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans on Automatic Control, 2009, 54(6): 1254- 1269. 被引量:1
  • 10王小旭,潘泉,黄鹤,高昂.非线性系统确定采样型滤波算法综述[J].控制与决策,2012,27(6):801-812. 被引量:88

二级参考文献52

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3周东华,王庆林.有色噪声干扰的非线性系统强跟踪滤波[J].北京理工大学学报,1997,17(3):321-326. 被引量:32
  • 4Schmidt S F. The Kalman filter-its recognition and development for aerospace applications[J].Journal of Guidance,Control & Dynamics,1981,(01):4-7. 被引量:1
  • 5Gordon N J,Salmond D J,Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian State estimation[J].IEE Proceedings Part F-radar and Signal Proceeding,1993,(02):107-113. 被引量:1
  • 6Julier S J,Uhlman J K. A new extension of the Kalman filter to nonlinear systems[J].Proc of the Society of Photooptical Instrumentation Engineers,1997,(03):182-193. 被引量:1
  • 7Norgaard M,Poulsen N K,Ravn O. New developments in state estimation for nonlinear systems[J].Automatica,2000,(11):1627-1628.doi:10.1016/S0005-1098(00)00089-3. 被引量:1
  • 8Ito K,Xiong K Q. Gaussian filters for nonlinear filtering problems[J].IEEE Transactions on Automatic Control,2000,(05):910-927.doi:10.1109/9.855552. 被引量:1
  • 9Kotecha J H,Djuric P A. Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,(10):2592-2601.doi:10.1109/TSP.2003.816758. 被引量:1
  • 10Ienkaran Arasaratnam,Simon Haykin. Cubature Kalman filters[J].IEEE Transactions on Automatic Control,2009,(06):1254-1269. 被引量:1

共引文献214

同被引文献73

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部