期刊文献+

基于GPU的轮廓提取算法的并行计算方法研究 被引量:3

Research on parallel computation of boundary detection based on GPUs
下载PDF
导出
摘要 为解决高质量的轮廓提取算法计算复杂、实时性差的问题,基于GPU并行计算架构提出了一种针对高质量的轮廓提取算法——Pb(probability boundary,概率轮廓)提取算法的高效并行计算方法。重点讨论了如何利用多计算单元加速计算最耗时的梯度计算部分。详细介绍了多方向直方图并行统计机制及χ2并行计算中访存冲突避免机制。对比实验表明,在GPU上基于该并行方法的轮廓提取相比传统CPU方式具有明显加速效果,且随着图像分辨率变大,加速效果更加明显,例如图像大小为1024×1024时可获得160倍的加速;此外,基于伯克利标准测试集验证了该并行方法可保持原有算法的计算准确度。为大规模图像数据智能分析中的轮廓提取提供了快速、实时的计算方法。 In order to solve the problem of high computational complexity and poor real-time performance in high-quality boundary detection algorithms, this paper proposed a high-efficient parallel computing method based on GPUs for the Pb algorithm, one high-quality boundary detection method. This paper paid more attention to accelerating gradient computation, which was the bottleneck of boundary detection computation. The method to process histogram statistics in parallel were discussed in more detail, as well as the method to avoid bank conflicts on shared memory when computing Х^2 differences in parallel. Experimental results show that the original CPU-based Pb algorithm is accelerated significantly by deploying the parallelized method on a GPU. The acceleration effect becomes more distinguished with increasing image sizes. Take 1024 ×1024 as an instance, it obtains a 160x improvement by employing GPU-based optimized method. Moreover, it also shows that the parallel computing method is able to obtain the same detection accuracy with that of original when Berkeley datasets are used as the test bench. This paper provides a reference method for high speed and real-time analyzing of high volume image data.
出处 《计算机应用研究》 CSCD 北大核心 2015年第2期630-634,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61170121) 高等学校学科创新引智计划资助项目(B12018)
关键词 轮廓提取 并行计算 图形处理器 boundary detection parallel computation GPU
  • 相关文献

参考文献13

二级参考文献64

共引文献67

同被引文献29

  • 1Malacara D. Optical shop testing[M].Canada: John Wiley ~ Sons, Inc., Publication, 2007: 361-375. 被引量:1
  • 2Javier Vargas, Luis Gonzalez-Femandez, Juan Anto- nio Quiroga, et al. Shack-Hartmann centroid detec- tion method based on high dynamtic range imaging and normalization technigues [J]. Appl Opt, 2010, 49 ( 13 ) : 2409-2416. 被引量:1
  • 3Fleck A, Lakshminarayanan V. Statistical error of a compact high-resolution Shack-Hartmann wavefront sensor with a descrete array[J]. Appl Opt,2010,49 (31) .136-139. 被引量:1
  • 4Ben C Platt, Roland Shack. Histroy and principles of Shack-Hartmann wavefront sensing[J]. J Refract Surg, 2001,17(5) : 573-577. 被引量:1
  • 5Tyson R K. Principles of adaptive optics[M]. USA: Academic Press. 1991. 被引量:1
  • 6Southwell W H. Wave-front estimation form wave- front slope measurements [J].J.Opt.Soc.Am., 1980, 70(8) :998-1006. 被引量:1
  • 7Noll R J. Zemike polynomials and atmospheric turbulence[J].J.Opt.Soc.Am.A, 1976,66(3) :203 211. 被引量:1
  • 8韩博,周秉锋.GPGPU性能模型及应用实例分析[J].计算机辅助设计与图形学学报,2009,21(9):1219-1226. 被引量:16
  • 9左颢睿,张启衡,徐勇,赵汝进.基于GPU的并行优化技术[J].计算机应用研究,2009,26(11):4115-4118. 被引量:23
  • 10李大禹,胡立发,穆全全,曹召良,夏明亮,李抄,刘肇楠,宣丽.CUDA架构下的液晶自适应波面数值解析[J].光学精密工程,2010,18(4):848-854. 被引量:11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部