期刊文献+

内腔多原子直接俘获的强耦合腔量子力学系统的构建 被引量:1

Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms
原文传递
导出
摘要 腔内中性原子的长时间控制与俘获一直是腔量子电动力学(QED)中的一个难题,极大地制约了人们相干操控单原子及其与光相互作用的研究.基于传统Fabry-Perot光学腔,设计了一套易于内腔原子操控的强耦合腔QED系统,其典型参数为:腔长3.5 mm精细度约为57000,(g0,κ,γ)=2π×(1.48,0.375,2.61)MHz,临界光子数和原子数分别为1.54和0.89.该系统的特点是:能够在腔内直接实现冷原子磁光阱,并建立腔内光学晶格,实现腔内可控数目的中性原子的长时间俘获.通过合理选择构建光学偶极阱和原子成像系统,可实现对腔内单个原子或原子阵列的操控、探测、成像等.该系统可以克服传统腔QED系统中转移原子的困难,大幅增加腔内原子的寿命,为构建以腔QED系统为基础的量子信息演示平台提供了一种可能. The long-time trap and control of neutral atoms in an optical micro-cavity is a crucial problem in cavity quantum electrodynamics (QED), which greatly restricts the coherent manipulation of the interaction process between single atom and light. In this paper, we design a strongly coupled cavity QED system based on the traditional Fabry-Perot cavity. The parameters of the cavity are 3.5 millimeters in length, about 57000 in fineness, (g0,κ,γ)=2π× (1.48, 0.375, 2.61) MHz, 1.54 and 0.89 in critical photon and atom number, respectively. The system allows building the magneto-optical trap (MOT) and optical lattice directly inside the cavity, which provides the possibility of long-time trapping deterministic single neutral atom or a number of neutral atoms in the cavity. By setting up a dipole trap and atomic imaging system, the capture, detection and imaging of single atom or several atoms in the cavity can be realized. The system overcomes some di?culties in transferring atoms in the usual cavity QED and has potential applications in robust intracavity atom control for quantum information processing.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第24期223-228,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11125418,61275210,91336107,61227902,61121064) 国家重点基础研究发展计划(批准号:2012CB921601)资助的课题~~
关键词 腔量子电动力学 磁光阱 原子俘获 光学晶格 cavity quantum electrodynamics,magneto-optical trap,atom trapping,optical lattice
  • 相关文献

参考文献4

二级参考文献68

  • 1Van Enk S J Kimble H J quan-ph/0107088 被引量:1
  • 2Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. A. 47R4567 被引量:1
  • 3Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett.87 010404 被引量:1
  • 4Weber T, Herbig J, Mark M, Nagerl H C and Grimm R 2003Science 299 232 被引量:1
  • 5Yin J P et al 2000 Chin. Phys. 9 342 被引量:1
  • 6Protsenko I E, Reymond G, Schlosser N and Grangier P 2002 Phys.Rev. A. 65 052301 被引量:1
  • 7Schlosser N, Reymond G, Protsenko I and Grangier P 2001 Nature404 1024 被引量:1
  • 8McKeever J, Buck J R, Boozer A D, Kuzmich A, Nagerl H C,Stamper-Kurn D M and Kimble H J 2002 ArXiv: quant-ph/0211013 被引量:1
  • 9Metcalf H J and P V D Straten 1999 Laser Cooling and Trapping (New York, Springer-Verlag) p8 被引量:1
  • 10Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At.Mol. Opt. Phys. 42 95 被引量:1

共引文献25

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部