期刊文献+

利用Weka挖掘白血病与基因的关系 被引量:4

Mining the relation between leukemia and genes using Weka
下载PDF
导出
摘要 目的:使用Weka挖掘白血病与基因关系。方法:检索PubM ed数据库,获得研究数据;利用BICOMB抽取主要主题词和副主题词,生成高频词共现矩阵和词篇矩阵,利用Weka平台、采用Cobweb算法对共现矩阵数据进行聚类分析得到研究热点和进行文献验证。结果:Weka将42个高频词聚为7类,代表白血病与基因的7个可能联系,但第1,2,4,5类中没有白血病或基因高频词,聚类效果较差,其余类聚类效果较好。结论:聚类分析发现白血病与myc基因、abl基因、p53基因、病毒基因、免疫球蛋白基因和mdm基因有关。 Objective To mine the relation between leukemia and genes using Weka. Methods The papers on leuke- mia and genes were retrieved from PubMed, their subject headings and subheadings were extracted using BICOMB to generate co-occurrence matrix and term-paper matrix. The research hotspots were found by cluster analysis of the data on co-occurrence matrix using Weka and Cobweb. The literature was verified. Results The 42 high frequency words were clustered into 7 classes by Weka. No high frequency words of leukemia or genes were found in classes 1, 2, 4 and 5, indicating that their clustering efficiency was poor. The clustering efficiency of the other 3 classes was good. Conclusion Cluster analysis showed that leukemia is related with myc gene, abl gene, p53 gene, virus gene, immunoglobulin gene and mdm gene.
作者 黄锐 闫雷
出处 《中华医学图书情报杂志》 CAS 2015年第1期50-54,60,共6页 Chinese Journal of Medical Library and Information Science
关键词 WEKA Cobweb 聚类分析 白血病 基因 数据挖掘 共现分析 可视化分析 研究热点 Weka Cobweb Cluster analysis Leukemia Gene Data mining Coocurence mining system Visualanalysis Research hot spot
  • 相关文献

参考文献2

二级参考文献5

共引文献584

同被引文献58

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部