期刊文献+

适于硬件实现的自适应权重立体匹配算法

Adaptive Support-weight Approach of Stereo Matching for Hardware Implementation
下载PDF
导出
摘要 针对自适应权重方法在立体匹配应用时计算复杂度高,不易于实时实现的情况,通过对原算法进行权值估计改进、算法并行化设计降低计算复杂度,并应用模块并行化设计和流水线处理,提出了一种适于硬件实现的自适应权重代价聚合架构。通过Census变换计算初始匹配代价,应用改进的自适应权重方法进行并行双通道代价聚合得到可靠匹配代价,利用左右一致性检测、亚像素插值优化得到稠密视差图,实现立体匹配。整个匹配流程在单片FPGA上实现,对于大小为640×480的左右图像,系统时钟频率为60MHz情况下,实现每秒处理72帧。实验验证表明,该算法结构简单,复杂度低,适于硬件实现。 To overcome the high computational complexity and the difficulty of real-time application, a hardware implementation architecture for the adaptive support-weight approach of cost aggregation was proposed. It reduced the complexity of the original algorithm by improving of weights estimation and paralleling algorithm. Furthermore it used the hardware sub-module parallelism and pipelined structure to improve performance. The initial cost was calculated by Census transform and the reliable cost was got with the improved adaptive support-weight approach using a two pass method in parallel. After left-right consistency check and sub-pixel interpolation, a dense disparity map could be obtained to implement the stereo matching. The entire stereo matching process was realized using a single chip of Field Programmable Gate Array (FPGA). The matching process was capable of generating disparities at more than 72 frames per second on 640×480 images when clocked at 60 MHz. The experiments presented that the proposed algorithm with concise structure and low complexity was suitable for the hardware implementation.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第9期2079-2084,2090,共7页 Journal of System Simulation
基金 国家自然科学基金(60970157) 辽宁省教育厅一般科技项目(L2012003)
关键词 立体匹配 自适应权重算法 代价聚合 现场可编程门阵列 stereo matching adaptive support-weight approach cost aggregation FPGA
  • 相关文献

参考文献17

  • 1Lazaros N, Sirakoulis G C, Gasteratos A. Review of stereo vision algorithms: from software to hardware [J]. International Journal of Optomechatronics (S 1559-9612), 2008, 2(4): 435-462. 被引量:1
  • 2Yu W, Chen T, Franchetti F, et al. High performance stereo vision designed for massively data parallel platforms [J]. IEEE Transactions on Circuits and Systems for Video Technology (S1051-8215), 2010, 20(11): 1509-1519. 被引量:1
  • 3Cullagh B. Real-time disparity map computation using the cell broadband engine [J]. Journal of Real-Time Image Processing (SI861-8200), 2012, 7(2): 87-93. 被引量:1
  • 4Humenberger M, Zinner C, Weber M, et al. A fast stereo matching algorithm suitable for embedded real-time systems [J]. Computer Vision and Image Understanding (S1077-3142), 2010, 114(11): I180-1202. 被引量:1
  • 5Ambrosch K, Kubinger W. Accurate hardware-based stereo vision [J]. Computer Vision and Image Understanding (S1077-3142), 2010, 114(11): 1303-1316. 被引量:1
  • 6丁菁汀,杜歆,周文晖,刘济林.基于FPGA的立体视觉匹配的高性能实现[J].电子与信息学报,2011,33(3):597-603. 被引量:6
  • 7Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International journal of computer vision (S0920-5691), 2002, 47(1-3): 7-42. 被引量:1
  • 8Xu Y, Wang D, Feng T, et al. Stereo computation using radial adaptive windows [C]. Proceedings. 16th International Conference on Pattern Recognition, 2002. USA: IEEE, 2002, 3: 595-598. 被引量:1
  • 9Tombari E Mattoccia S, Di Stefano L. Segmentation-based adaptive support for accurate stereo correspondence [M]. Advances in Image and Video Technology. Germany: Springer Berlin Heidelberg, 2007: 427-438. 被引量:1
  • 10Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2006, 28(4): 650-656. 被引量:1

二级参考文献41

  • 1Hirschmtlller H, Innocent P R, and Garibaldi J. Real-time correlation-based stereo vision with reduced border errors [J]. International Journal of Computer Vision, 2004, 47(1-3): 229-246. 被引量:1
  • 2Mtthlmann K, Maiser D, and Hesser J, et al.. Calculating dense disparity maps from color stereo images, an efficient implementation [J]. International Journal of Computer Vision, 2004, 47(1): 79-88. 被引量:1
  • 3Jia Yun-de, Zhang Xiao-xun, and Li Ming-xiang, et al.. A Miniature Stereo Vision Machine(MSCM-Ⅲ) for dense disparity mapping [C]. Proceedings of 17th International Conference on Pattern Recognition, Cambridge, August, 2004: 728-731. 被引量:1
  • 4Forstman S, Kanou Y, and Ohua J, et al.. Real-time stereo by using dynamic programming [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, DC, Jul.02, 2004, Vol.3: 29. 被引量:1
  • 5Gong M and Yang Y. Near real-time reliable stereo matching using programmable graphic hardware [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition San Diego, Jun.20, 2005, Vol.l: 924-931. 被引量:1
  • 6Wei Yu, Tsuhan C, and Hoe J C. Real time stereo vision using exponential step cost aggregation on GPU [C]. Proceedings of the International Conference on Image Processing, Cairo, Nov. 2009: 4281-4284. 被引量:1
  • 7Woodfill J and Von-Herzen B. Real-time stereo vision on the PARTS reconfigurable computer[C]. Proceedings of 5th IEEE Symposium on FPGAs for Custom Computing Machines, Napa California, Apr. 16, 1997: 201-210. 被引量:1
  • 8Ambrosch K, Humenberger M, and Kubinger W, et aL. Hardware implementation of an SAD based stereo vision algorithm [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, Minneapolis, Jun. 17, 2007: 1-6. 被引量:1
  • 9Chen L and Jia Yunde. A Parallel reconfigurable architecture for reM-time stereo vision [C]. Proceedings of the International Conference on Embedded Software and Systems, Hangzhou, May 25, 2009: 32-39. 被引量:1
  • 10Jin S, Cho J, and Phan X, et al.. FPGA design and implementation of a Real-Time stereo vision system[J]. IEEETransaction on Circuits and Systems for Video Technology, 2010, 20(1): 15-26. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部