期刊文献+

基于人工免疫系统的故障诊断方法及其应用 被引量:3

Artificial Immune System Based Fault Detection Approach with Application to Carbon Fiber Stretching Process
下载PDF
导出
摘要 提出了一种基于人工免疫系统的在线故障诊断方法,实现人体内抗体库中保留有效记忆抗体及故障类型的实时准确识别的能力。基于人体免疫系统中T细胞和B细胞的理论,将抗体库分为第一抗体库和第二抗体库,第二抗体库的生成依赖于保留有记忆效应的第一抗体库的监测范围。该方法根据平均信息熵和欧氏距离理论,有效地设计了第一抗体集的覆盖范围,保证了探测的效果,并以此为基础生成整个故障诊断的抗体集,以更加有效地实现故障的诊断。提出的故障诊断系统应用于碳纤维生产过程中牵伸系统,结合牵伸环节实时采集的数据信息,得出了较准确的故障识别结论。 As a novel natural computation method, online fault diagnosis system(OFDS) inspired by artificial immune systems for realizing the real-time fault type identifying, memorizing, even self-responding to normal conditions after diagnosis in further development, was defined as fault detection system on dynamic stretching process in carbon fiber production line. OFDS proposed some improved operators, such as distance calculation for antibody selecting and rapidly antigen identified, in which the Average Information Entropy theory and the Euclidean Distance were used to design the first antibody population in order to ensure the detection space cover and to further enhance the effectiveness of entire antibody population. It was also applied to stretching model to demonstrate the effectiveness of fault diagnosis and corresponding ability of antibody memorizing. The results show that five fault types can almost be identified accurately.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第4期830-835,共6页 Journal of System Simulation
基金 国家自然科学基金重点项目(61134009) 长江学者和创新团队发展计划(IRT1220) 上海领军人才专项资金 上海市科学技术委员会重点基础研究项目(13JC1407500 11JC1400200) 上海市教育委员会科研创新项目(14ZZ067) 中央高校基本科研业务费专项资金资助(2232012A3-04)
关键词 人工免疫系统 故障诊断 平均信息熵 抗体记忆 碳纤维生产 牵伸过程 artificial immune system fault diagnosis average information entropy antibody memorizing carbon fiber production line stretching process
  • 相关文献

参考文献14

  • 1周东华,叶银忠著..现代故障诊断与容错控制[M].北京:清华大学出版社,2000:347.
  • 2庞茂,周晓军,孟庆华,胡宏伟.在线噪声检测及噪声信号的故障诊断技术研究[J].传感技术学报,2006,19(1):142-145. 被引量:9
  • 3Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning [J]. Physica D: NonlinearPhenomena (S0167-2789), 1986, 22(1): 187-204. 被引量:1
  • 4De Castro L N, Timmis J. Artificial immune systems: a new computational intelligence approach [M]. Germany: Springer Verlag, 2002. 被引量:1
  • 5De Castro L N, Von Zuban F J. Learning and optimization using the clonal selection principle [J]. IEEE Transactions on Evolutionary Computation ($1089-778X), 2002, 6(3): 239-251. 被引量:1
  • 6Branco P J C, Dente J A, Mandas R V. Using immunology principles for fault detection [J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2003, 50(2): 362-373. 被引量:1
  • 7Ishignro A, Watanabe Y, Uehikawa Y. Fault diagnosis of plant systems using immune networks [C]// IEEE International Conference on MFI'94, Multisensor Fusion and Integration for Intelligent Systems. USA: IEEE, 1994: 34-42. 被引量:1
  • 8Dong H, Wang Z, Lain J, et al. Fuzzy-modal-based robust fault detection with stochastic mixed time delays and successive packet dropouts [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics (S1083-4419), 2012, 42(2): 365-376. 被引量:1
  • 9Silva G C, Palhares R M, Caminhas W M. Immune inspired Fault Detection and Diagnosis: A fuzzy-based approach of the negative selection algorithm and participatory clustering [J]. Expert Systems with Applications (S0957-4174), 2012, 39(16): 12474-12486. 被引量:1
  • 10Aydin I, Karakose M, Akin E. An adaptive artificial immune system for fault classification [J]. Journal of Intelligent Manufacturing (S0956-5515), 2012, 23(5): 1489-1499. 被引量:1

二级参考文献13

共引文献30

同被引文献45

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部