期刊文献+

Impact of Climate Change on Maize Potential Productivity and the Potential Productivity Gap in Southwest China 被引量:8

Impact of Climate Change on Maize Potential Productivity and the Potential Productivity Gap in Southwest China
原文传递
导出
摘要 The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China(SWC) are investigated in this paper.We analyze the impact of climate change on the photosynthetic,light-temperature,and climatic potential productivity of maize and their gaps in SWC,by using a crop growth dynamics statistical method.During the maize growing season from 1961 to 2010,minimum temperature increased by 0.20℃ per decade(p 〈 0.01) across SWC.The largest increases in average and minimum temperatures were observed mostly in areas of Yunnan Province.Growing season average sunshine hours decreased by 0.2 h day^(-1) per decade(p 〈 0.01) and total precipitation showed an insignificant decreasing trend across SWC.Photosynthetic potential productivity decreased by 298 kg ha^(-1)per decade(p 〈 0.05).Both light-temperature and climatic potential productivity decreased(p 〈 0.05) in the northeast of SWC,whereas they increased(p 〈 0.05) in the southwest of SWC.The gap between lighttemperature and climatic potential productivity varied from 12 to 2729 kg ha^(-1),with the high value areas centered in northern and southwestern SWC.Climatic productivity of these areas reached only 10%-24%of the light-temperature potential productivity,suggesting that there is great potential to increase the maize potential yield by improving water management in these areas.In particular,the gap has become larger in the most recent 10 years.Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC.The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC. The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China(SWC) are investigated in this paper.We analyze the impact of climate change on the photosynthetic,light-temperature,and climatic potential productivity of maize and their gaps in SWC,by using a crop growth dynamics statistical method.During the maize growing season from 1961 to 2010,minimum temperature increased by 0.20℃ per decade(p 〈 0.01) across SWC.The largest increases in average and minimum temperatures were observed mostly in areas of Yunnan Province.Growing season average sunshine hours decreased by 0.2 h day^(-1) per decade(p 〈 0.01) and total precipitation showed an insignificant decreasing trend across SWC.Photosynthetic potential productivity decreased by 298 kg ha^(-1)per decade(p 〈 0.05).Both light-temperature and climatic potential productivity decreased(p 〈 0.05) in the northeast of SWC,whereas they increased(p 〈 0.05) in the southwest of SWC.The gap between lighttemperature and climatic potential productivity varied from 12 to 2729 kg ha^(-1),with the high value areas centered in northern and southwestern SWC.Climatic productivity of these areas reached only 10%-24%of the light-temperature potential productivity,suggesting that there is great potential to increase the maize potential yield by improving water management in these areas.In particular,the gap has become larger in the most recent 10 years.Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC.The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.
出处 《Journal of Meteorological Research》 SCIE 2014年第6期1155-1167,共13页 气象学报(英文版)
基金 Supported by the National Basic Research and Development (973) Program of China(2013CB430205)
关键词 climate change crop growth dynamics statistical method potential productivity sensitivity coefficient climate change crop growth dynamics statistical method potential productivity sensitivity coefficient
  • 相关文献

参考文献11

二级参考文献183

共引文献460

同被引文献155

引证文献8

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部