期刊文献+

车辆点焊结构有限元模型参数不确定性修正方法 被引量:4

Parameters Uncertainty Updating Approach for Finite Elelment Model of Spot Welded Vehicle Structure
下载PDF
导出
摘要 提出了针对参数不确定性的综合贝叶斯的有限元模型修正方法。即在贝叶斯中融入用以代替原模型的随机模型和基于吉布斯抽样的蒙特卡罗马尔科夫链抽样算法,选定较敏感参数进行仿真获取模型参数的后验分布动态统计特征,进而评估参数不确定度。实例验证了文中方法的有效性,表明随机响应面模型可极大提高吉布斯抽样计算效率,尤其适用于含多维不确定性参数的复杂结构有限元模型不确定性修正问题。 The paper proposed a new synthesized bayesianian approach for structure finite element model updating by using parameters uncertainty estimation. It integrated stochastic models instead of the original model and markov chain Monte Carlo(MCMC) algorithm with gibbs sampling. By sensitivity analysis, sensitive parameters were used to simulate and obtain parameters dynamic posterior statistics characteristics, and then the parameters uncertainty was eatimated. Numerical simulation indicates that the approach is effective, It evidently improves the computational efficiency with SRSM, the method is suitable for finite element model updating of complex structure containing multi -parameters uncertainty.
出处 《机械科学与技术》 CSCD 北大核心 2014年第10期1545-1550,共6页 Mechanical Science and Technology for Aerospace Engineering
关键词 有限元方法 参数估计 随机模型 蒙特卡罗 马尔科夫过程 algorithms computational efficiency computer simulation covariance matrix efficiency finite element method flowcharting Markov processes mathematical models Monte Carlo methods parameter estimation parameterization sensitivity analysis spot welding statistics stochastic models
  • 相关文献

参考文献10

  • 1李国强,李杰著..工程结构动力检测理论与应用[M].北京:科学出版社,2002:283.
  • 2Beck J L, Katafygiotis L S. Updating models and their uncertainties I : Bayesian statistical framework [ J ]. Journal of Engineering Mechanics, 1998, 124 (4): 455-461. 被引量:1
  • 3Katafygiotis L S, Beck J L. Updating models and their uncertainties II: Bayesian statistical framework [ J ]. Journal of Engineering Mechanics, 1998, 124 (4): 463 -467. 被引量:1
  • 4Vanik M W, Beck J L, Au S K. Bayesian probabilistic approach to strnctural health monitoring [ J ]. Journal of Engineering Mechanics, 2000,126 ( 7 ) : 738-745. 被引量:1
  • 5David P M S. Actuarial modeling with MCMC and BUGS [ J]. North American Actuarial Journal, 2001, 5(2) :96-125. 被引量:1
  • 6Lsukapalli S S, Roy A, Georgopoulos P G. Stochastic response surface methods for uncertainty propagation: application to environment and biological systems [ J ]. Risk Analysis, 1998,18 (3) :351-363. 被引量:1
  • 7Husian N A, Khodaparast H H, Ouyang H, Parameter selection and stochastic model updating using perturbation methods with parameter weighting matrix assignment [ J ]. Mechanical Systems and Signal Processing, 2012,32 : 135-152. 被引量:1
  • 8郭秩维,白广忱.随机响应面法在结构随机响应计算中的应用[J].航空动力学报,2008,23(11):2021-2025. 被引量:9
  • 9林静,韩玉启,朱慧明.基于MCMC稳态模拟的指数回归模型及其应用[J].运筹与管理,2005,14(4):95-100. 被引量:5
  • 10IONANNIS Ntzoufras. Bayesian modeling Using WinBUGS[ M ]. New Jersey: John Wiley & Sons, Inc. ,2009:141-144. 被引量:1

二级参考文献21

  • 1金龙,况雪源,黄海洪,覃志年,王业宏.Study on the Overfitting of the Artificial Neural Network Forecasting Model[J].Acta meteorologica Sinica,2005,19(2):216-225. 被引量:9
  • 2刘乐平,袁卫.现代贝叶斯分析与现代统计推断[J].经济理论与经济管理,2004,24(6):64-69. 被引量:49
  • 3Ghanem R, Spanos P D. Polynomial chaos in stochastic finite elements[J]. Journal of Applied Mechanics, 1990, 57(1):197 -202. 被引量:1
  • 4Schueller G L A state of the art report on computational stochastic mechanics[J].Journal of Probabilistic Engineering Mechanics,1997,12(4):197-313. 被引量:1
  • 5Shinozuka M, Deodatis G. Response variability of stochastic finite element systems[J]. Stochastic Mechanics, 1986,(1):215 -222. 被引量:1
  • 6Matthies H G, Brenner C E, Bucher C G, et al. Uncertainties in probabilistic numerical analysis of structures and solids-stochastic finite elements[J]. Structural Safety, 1997,19(3):283 -336. 被引量:1
  • 7Ghanem R, Spanos P D. Stochastic finite element:a spectral approach[M]. New York: Springer-Verlag, 1991. 被引量:1
  • 8Hurdo J E, Alvarez D A. Neural network based reliability analysis:A comparative study [J]. Computer Methods in Applied Mechanics and Engineering, 2002,191 : 113-132. 被引量:1
  • 9Myers R H, Montgomery D C. Response surface method ology: process and product optimization using designed experiments[M]. Wiley, 2002. 被引量:1
  • 10Isulapalli S S, Roy A, Georgopoulos P G. Stochastic re sponse surface methods for uncertainty propagation: ap plieation to environmental and biological systerns[J]. Risk Analysis, 1998, 18(3):351-363. 被引量:1

共引文献12

同被引文献21

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部